UDC

中华人民共和国行业标准

JEJ

P

JGJ/T 423-2018 备案号 J 2481-2018

玻璃纤维增强水泥(GRC)建筑应用 技术标准

Technical standard for glass fiber reinforced cement (GRC) used on building

2018-02-14 发布

2018-10-01 实施

中华人民共和国住房和城乡建设部 发布

中华人民共和国行业标准

玻璃纤维增强水泥(GRC)建筑应用 技术标准

Technical standard for glass fiber reinforced cement (GRC) used on building

JGJ/T 423 - 2018

批准部门:中华人民共和国住房和城乡建设部施行日期:2018年10月1日

中国建筑工业出版社

2018 北 京

中华人民共和国行业标准 玻璃纤维增强水泥(GRC)建筑应用技术标准

Technical standard for glass fiber reinforced cement (GRC) used on building

JGJ/T 423 - 2018

*

中国建筑工业出版社出版、发行(北京海淀三里河路9号) 各地新华书店、建筑书店经销 北京红光制版公司制版 北京建筑工业印刷厂印刷

*

开本: 850×1168 毫米 1/32 印张: 4% 字数: 129 千字 2018 年 7 月第一版 2018 年 7 月第一次印刷 定价: 34.00 元

统一书号: 15112 · 31450

版权所有 翻印必究

如有印装质量问题,可寄本社退换 (邮政编码 100037)

本社网址: http://www.cabp.com.cn

网上书店: http://www.china-building.com.cn

中华人民共和国住房和城乡建设部 公 告

第 1842 号

住房城乡建设部关于发布行业标准 《玻璃纤维增强水泥(GRC)建筑应用 技术标准》的公告

现批准《玻璃纤维增强水泥(GRC)建筑应用技术标准》为行业标准,编号为 JGJ/T 423 - 2018,自 2018 年 10 月 1 日起实施。

本标准在住房城乡建设部门户网站(www. mohurd. gov. cn)公开,并由住房城乡建设部标准定额研究所组织中国建筑工业出版社出版发行。

中华人民共和国住房和城乡建设部 2018 年 2 月 14 日

前 言

根据住房和城乡建设部《关于印发〈2015 年工程建设标准规范制订、修订计划〉的通知》(建标 [2014] 189号)的要求,标准编制组经广泛调查研究,认真总结实践经验,参考有关国际标准和国外先进标准,并在广泛征求意见的基础上,编制了本标准。

本标准的主要技术内容是: 1. 总则; 2. 术语和符号; 3. 材料; 4. 建筑设计; 5. 结构设计基本规定; 6. GRC 平板结构设计; 7. GRC 带肋板结构设计; 8. GRC 背附钢架板结构设计; 9. 制作加工; 10. 安装施工; 11. 验收; 12. 维修与保养。

本标准由住房和城乡建设部负责管理,由中国建筑材料科学研究总院负责具体技术内容的解释。执行过程中如有意见或建议,请寄送中国建筑材料科学研究总院(地址:北京市朝阳区管庄东里1号,邮政编码:100024)。

本 标 准 主 编 单 位:中国建筑材料科学研究总院 上海建工房产有限公司

本标准参编单位:南京倍立达新材料系统工程股份有限 公司

> 北京雷诺轻板有限责任公司 湖南天泽建材有限公司 北京宝贵石艺科技有限公司 上海肯特装潢工程有限公司 砼创(上海)新材料科技股份有限 公司

大连山泰新实业有限公司 广西青龙化学建材有限公司

成都润科建筑工程有限公司 北京隆源装饰材料有限公司 广州市双瑜建筑艺术工程有限公司 长沙梁氏装饰工程有限公司 成都金圣实业有限公司 上海鼎中新材料有限公司 上海汇辽建筑装饰工程有限公司 泰孚新材料科技发展(上海)有限 公司 台州亿恒装饰有限公司 湖北汇尔杰新材料科技股份有限公司 泰山玻璃纤维有限公司 安徽华普节能材料股份有限公司 宁波市轨道交通集团有限公司

本标准主要起草人员: 崔 琪 李清海 钱 进 熊吉如 雷新忠 车延飞 黄政国 杨小赫 张 朝岳超张循宋敦清 罗 强 秦永超 袁建华 梁金华 唐 纲 矫 民 余战讲 董大根 许挺贤 郭 清 唐志尧 汤俊怀 周昌宝 高国庆 张洁龙 尹向红

本标准主要审查人员,李 宏 王培铭 王存贵 费毕刚 朱松超 霍瑞琴 刘之春 奚飞达 肖 慧 沈春林 贺鸿珠

目 次

1	总	则	• 1
2	术i	吾和符号	• 2
	2. 1	术语	
	2.2	符号	• 3
3	材料	枓	• 9
	3. 1	一般规定 ************************************	. 9
	3. 2	金属材料 ************************************	. 9
	3. 3	建筑密封材料 ************************************	10
	3. 4	其他材料	10
4	建筑	筑设计	12
	4.1	一般规定	12
	4.2	性能与检测要求 ••••••	12
	4.3	建筑构造设计 · · · · · · · · · · · · · · · · · · ·	13
	4, 4	GRC 构件的构造与连接设计 ·····	14
	4.5	防火与防雷设计 ·····	16
5	结	勾设计基本规定······	17
	5.1	一般规定	17
	5.2	材料力学性能	20
	5.3	荷载与作用	24
	5.4	作用效应组合 · · · · · · · · · · · · · · · · · · ·	26
	5.5	连接设计 ************************************	28
	5.6	承载力极限状态设计	29
	5.7	抗裂验算	33
	5.8	锚固承载力设计	33
6	GF	RC 平板结构设计	38

	6.1	GRC 平板 ···································	
	6.2	横梁	
	6.3	立柱	42
7	GR	C 带肋板结构设计 ······	46
	7.1	面板 ************************************	46
	7.2	加强肋 ************************************	47
	7.3	极限状态设计 ************************************	48
8	GR	C 背附钢架板结构设计 ······	50
	8.1	GRC 面板 ······	50
	8.2	背附钢架设计 · · · · · · · · · · · · · · · · · · ·	51
9	制化	作加工	53
	9.1	一般规定	53
	9.2	GRC 构件制作 ······	53
	9.3	金属构件加工 ••••••	54
	9.4	检验	54
	9.5	搬运和堆放・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
10	安	装施工	
	10.1	一般规定	57
	10.2	运输和现场堆放	
	10.3	施工准备	
	10.4	安装施工	59
	10.5	安装质量要求	
1.	1 验	收	
	11. 1	一般规定	
	11.2	进场验收	62
	11.3	中间验收	63
	11.4	竣工验收	
12	2 维	修与保养	
	12. 1	一般规定	66
	12. 2	检查与维修 ************************************	66

12.3 清洗和保养	···· 67	
附录 A 耐候钢强度设计值 ······	···· 68	
附录 B 钢结构连接强度设计值 ······	···· 70	
附录 C 预埋件设计 ······	···· 72	
附录 D 双向板计算系数 ······	···· 76	
附录 E GRC 外墙分项工程验收表 ······	80	
本标准用词说明	···· 82	
引用标准名录		
附:条文说明	···· 85	

Contents

1	Ge	neral Provisions ······	1
2	Te	rms and Symbols	2
	2. 1	Terms	2
	2.2	Symbols	3
3	Ma	terials ·····	9
	3. 1	General Requirements	9
	3. 2	Metal	9
	3. 3	Sealants ·····	10
	3.4	Other Materials	10
4	Ar	chitectural Design	12
	4.1	General Requirements	12
	4.2	Performance and Testing Requirements	12
	4.3	Building Construction Design	13
	4.4	GRC Element Construction and Connection	14
	4.5	Fire and Lightning Protection Design	16
5	Bas		17
	5. 1		17
	5.2	A THE STATE OF THE	20
	5.3		24
	5.4		26
	5.5	Fixing Design ·····	
	5.6	Load Capacity Limit State Design	
	5.7	Crack Resistance Calculation	33
	5.8	Anchor Capacity Design	33
6	Str	uctural Design for GRC Flat Sheet	38

	6. 1	GRC Flat Sheet	38
	6.2	Beam ·····	40
	6.3	Column ·····	42
7	Str	uctural Design for GRC Ribbed Panel	46
	7.1	Panel ·····	46
	7.2	Rib ·····	47
	7.3	Limit State Design	48
8	Str	uctural Design for GRC Stud Frame Panel	50
	8. 1	GRC Panel ·····	50
	8. 2	Stud Frame Panel Design	51
9	Ma	nufacturing ·····	53
	9.1	General Requirements	53
	9.2	GRC Elements Manufacturing	53
	9.3	Metal Parts Fabrication	54
	9.4	Inspection	54
	9.5	Transportation and Stacking	55
1() In	stallation ·····	57
	10.1	General Requirements	
	10.2	Transportation and Site Stacking	57
	10.3	Preparation	58
	10.4	Installation	59
	10.5	Quality Requirements	60
1	1 A	cceptance ·····	62
	11. 1	General Requirements	62
	11.2	Site Acceptance ·····	62
	11.3	Intermediate Acceptance	63
	11.4	Final Acceptance	63
1:	2 Se	ervicing and Maintenance	66
	12. 1	General Requirements	66
	12.2	Inspection and Maintenance	66

12.3 Cleanin	g and Maintenance ·····	67
Appendix A	Design Strength of Weathring Steel	68
Appendix B	Design Strength of Steel Structure	
1	Connection	70
Appendix C	Embedded Parts Design	72
Appendix D	Two-way Slab Calculation Coefficients	76
Appendix E	Acceptance Form for GRC Cladding Panel	
	Itemized Project ·····	80
Explanation of	Wording in This Standard	82
List of Quoted	l Standards ·····	83
Addition: Exp	planation of Provisions	85

1 总 则

- 1.0.1 为提高玻璃纤维增强水泥(以下简称 GRC)建筑应用技术水平,促进 GRC 构件在建筑中应用的科学化、规范化,做到技术先进、安全可靠、适用美观和经济合理,保证工程质量,制定本标准。
- **1.0.2** 本标准适用于 GRC 构件的材料选用、建筑与结构设计、制作加工、安装施工、验收及维修与保养。
- **1.0.3** GRC 构件在建筑中的应用除应符合本标准外,尚应符合国家现行有关标准的规定。

2 术语和符号

2.1 术 语

2.1.1 玻璃纤维增强水泥 glass fiber reinforced cement

以耐碱玻璃纤维为主要增强材料、水泥为主要胶凝材料、砂子等为集料,并辅以外加剂等组分,制成的纤维增强水泥基材料。简称 GRC。

2.1.2 GRC 构件 GRC element

以 GRC 制成的,用于建筑外围护的构件。包括 GRC 外墙板和 GRC 装饰制品。

2.1.3 GRC 外墙板 GRC cladding panel

以 GRC 制作的,用于建筑外围护的非承重外墙板。包括 GRC 单板和 GRC 复合板,简称 GRC 板。

2.1.4 GRC 装饰制品 GRC decorative products

以 GRC 制作的,用于建筑物外立面檐线、腰线、窗套、门套、山花、装饰柱等特定部位及其他各种装饰造型的构件。

2.1.5 GRC 外墙 GRC exterior wall

由 GRC 构件和支承结构体系组成的,可相对主体结构有一定位移能力,不分担主体结构所受作用的建筑外围护结构或装饰性结构。

2.1.6 GRC 带肋板 GRC ribbed panel

在 GRC 板背面四周或需要加强的部位制作有 GRC 加强肋的 GRC 板。包括 GRC 单层肋板、GRC 夹芯肋板和各种 GRC 装饰构件等。

2.1.7 GRC 背附钢架板 GRC stud frame panel

将 GRC 面板、柔性锚杆(或其他形式的柔性锚固件)和钢框架等在工厂按设计要求一次预制完成的 GRC 板。

2.1.8 表面防护材料 surface protection coating

用于改善 GRC 构件表面耐污、防水、耐久性能的材料。

2.1.9 柔性锚杆 flex anchor

用来连接 GRC 面板和背附钢架的做成 90°拐弯的钢筋件, 通常用来传递横向的风荷载和地震荷载,允许在和面板垂直的方 向上有一定的转动自由度。

2.1.10 重力锚杆 gravity anchor

连接 GRC 面板和背附钢架的金属件,位置通常靠近 GRC 面板底部,用来承担整个面板的重量。

2.1.11 背附钢架 stud frame

具有结构功能的金属框架,通过柔性锚杆和重力锚杆支承 GRC 面板,并与主体结构相连接。

2.1.12 粘结盘 bonding pad

为了固定锚固件而在 GRC 结构层上额外堆起的一块 GRC 材料,一般用在背附钢架 GRC 构件上。

2.1.13 GRC 标准试件 GRC normative test coupons

采用按标准方法制作的 GRC 试验板,经标准养护或与 GRC 构件同条件下养护至龄期后,在距试验板边缘规定距离以内的中间部位切割成用于不同性能试验且符合相应试验标准尺寸的试件。

2.2 符 号

2.2.1 材料力学性能

D — 材料刚度;

E — 材料弹性模量;

f ——钢材抗弯强度设计值;

 f_{AUk} ——GRC 材料老化后的抗拉强度标准值;

 f_{Bk} —— GRC 材料抗拉初裂强度标准值;

 f_c ——混凝土轴心抗压强度设计值;

 f_{Lk} —— GRC 材料比例极限强度标准值;

 f_{Mk} ——GRC 材料抗弯强度标准值:

 f_{stk} — 钢材或普通钢筋抗拉强度标准值;

 f_1 ——混凝土轴心抗拉强度设计值;

 f_{Uk} ——GRC 材料抗拉强度标准值;

 f_v — 钢材抗剪强度设计值;

 f_{v} — 钢筋抗拉强度设计值;

 f_{vk} — 钢材或普通钢筋屈服强度标准值;

MOR_A ——GRC 材料在自然大气暴露条件下达到设计使用年限 后的抗弯强度值:

 MOR_E ——GRC 材料标准龄期抗弯强度值;

r。——材料重力密度。

2.2.2 作用和作用效应及承载力

 F_{cd} ——GRC 锥体破坏受拉承载力设计值;

 F_{ck} ——GRC 锥体破坏受拉承载力标准值;

 F_1 ——单个试件的锚固受拉承载力;

F. ——锚固受拉承载力标准值:

 F_{sd} — 锚栓钢材破坏受拉承载力设计值;

 F_{sk} — 锚栓 (或锚杆) 钢材破坏受拉承载力标准值;

 F_{spk} ——GRC 劈裂破坏受拉承载力标准值;

F——该批试件锚固受拉承载力平均值;

Gk ——重力荷载标准值;

M — 弯矩设计值;

 M_x ——绕x 轴的弯矩设计值;

 M_v ——绕 y 轴的弯矩设计值;

N ——轴力设计值;

N_d ——锚固拉力设计值;

 $N_{\rm E}$ ——临界轴压力;

P_{Ek} ——平行于 GRC 构件面板平面的集中水平地震作用标准值:

gek ——垂直于 GRC 构件面板平面的分布水平地震作用标

准值:

- q_{Gk} ——重力荷载标准值;
 - qk ——荷载标准值;
- Q_{cd} ——GRC 边缘破坏受剪承载力设计值;
- Q_{ck} ——GRC 边缘破坏受剪承载力标准值;
- Q_{cok} ——GRC 剪撬破坏受剪承载力标准值;
 - Q ——单个试件的锚固受剪承载力;
 - Q. 锚固受剪承载力标准值:
- Q_{sd} 锚栓钢材破坏受剪承载力设计值;
- Q_{sk} 锚栓钢材破坏受剪承载力标准值;
 - Q——该批试件锚固受剪承载力平均值;
 - R——构件抗力或锚固承载力设计值;
- R_y ——GRC 构件抗裂承载力设计值;
 - S 荷载效应基本组合设计值;
- S_{E} —— 地震作用效应和其他荷载效应按基本组合的设计值;
- S_{FL} 地震作用效应标准值:
- S_{Gk} ——永久荷载效应标准值;
- S。——荷载效应按标准组合的设计值:
- S_{TMk} ——温湿度作用效应标准值;
- Sw. ——风荷载效应标准值:
 - u 构件挠度;
- ulim ——构件挠度限值;
 - V ——剪力设计值;
- V_d ——锚固剪力设计值;
- V_x x 轴方向剪力设计值;
- V_{\circ} y 轴方向剪力设计值;
- w_0 ——基本风压;
- ₩ 风荷载标准值;
 - σ 应力设计值:
- σь 重力荷载和风荷载按基本组合或标准组合计算的

GRC 构件截面弯拉应力设计值;

- σ_k 重力荷载或风荷载或地震作用下 GRC 构件截面应力 标准值:
- σ_{Ek} ——地震作用下 GRC 构件截面应力标准值;
- σ_{Gk} ——重力荷载作用下 GRC 构件截面应力标准值;
- σwk ——风荷载作用下 GRC 构件截面应力标准值;
 - σ_r ——GRC 构件截面抗裂应力设计值;
 - σ₁ ——温湿度效应按基本组合或标准组合计算的 GRC 构件 截面轴拉应力设计值;
- σ_{ts} ——GRC 构件的温度应力参考值;
- σ_{ss} ——GRC 构件的湿度应力参考值。

2.2.3 几何参数

- A ——GRC 构件平面面积或型材毛截面面积;
- A_n 立柱的净截面面积;
- A. 锚筋的总截面面积;
- b_f ——截面的翼缘计算宽度;
- d —— 直径;
- e 截面中性轴到受拉区边缘的距离;
- e₀ ——按异形截面尺寸计算的中性轴到受拉区边缘的距离;
- h ----厚度;
- l ──跨度;
- l。——受拉钢筋锚固长度;
- l_m ——短边净跨;
- l。——长边净跨;
- l_x ——短边边长;
- l, ——长边边长;
- I_x ——绕 x 轴的毛截面惯性矩;
- I_{y} ——绕 y 轴的毛截面惯性矩;
- S_x 横梁截面绕 x 轴的毛截面面积矩;
- S_y 横梁截面绕 y 轴的毛截面面积矩;

- t ——钢材或锚板厚度;
- t, ——横梁截面垂直干 x 轴腹板的截面总宽度;
- t_v 横梁截面垂直于 v 轴腹板的截面总宽度;
- W ——毛截面抵抗矩;
- W_{\min} ——最小弹性抵抗矩;
 - W_n 弯矩作用方向的净截面抵抗矩;
- W_{nx} ——绕截面x 轴的净截面抵抗矩;
- W_{ny} ——绕截面 y 轴的净截面抵抗矩。
 - z ——沿剪力作用方向最外层锚筋中心线之间的距离。

2.2.4 系数及其他

- K ——GRC 强度衰减系数;
- k ——地震作用下锚固承载力降低系数;
- m ——弯矩系数:
- m_x ——短边板跨中心点处的弯矩系数;
- mxmax ——短边板跨内最大弯矩系数;
 - m'_{x} ——固定边中点沿 l_{x} 方向的弯矩系数;
 - m, ——长边板跨中心点处的弯矩系数;
- m_{ymax} ——长边板跨内最大弯矩系数;
 - n ——样本容量:
 - S_{V} 该批试件锚固受剪承载力样本方差;
 - S_N 该批试件锚固受拉承载力样本方差:
 - t_a ——学生氏函数;
 - ν 材料泊松比:
 - α 材料的线膨胀系数;
 - αь 锚板弯曲变形折减系数;
 - α_r 锚筋层数影响系数;
 - α_{max} 水平地震影响系数最大值;
 - α 。——锚筋的外形系数;
 - α_v 锚筋受剪承载力系数;
 - $\beta_{\rm E}$ ——动力放大系数;

- $\beta_{\rm gz}$ —— 阵风系数;
 - γ 截面塑性发展系数;
- γ_0 构件重要性系数;
- γ_A 描固连接重要性系数;
- γ_b ——GRC 标准试件与 GRC 构件抗弯性能差异系数;
- γ_{cN} ——GRC 锥体破坏受拉承载力分项系数;
- γ_{ev} ——GRC 边缘破坏受剪承载力分项系数;
- γ_{coV} GRC 剪撬破坏受剪承载力分项系数;
 - γ_E 地震作用分项系数;
 - γ_{g} ——GRC 材料抗裂分项系数;
 - γ_G 永久荷载分项系数;
- γ_m ——GRC 材料分项系数;
- γ_{R} 锚固承载力分项系数;
- γ_{RE} ——承载力抗震调整系数;
- γ_{sN} 锚栓钢材破坏受拉承载力分项系数;
- γ_{SDN} ——GRC 劈裂破坏受拉承载力分项系数;
- γ_{sV} 锚栓钢材破坏受剪承载力分项系数;
- γ_{TM} ——温湿度作用分项系数;
- $\gamma_{\rm w}$ ——风荷载分项系数;
 - μ ——挠度系数;
- μ_{max} ——最大挠度系数;
 - μsl ——风荷载局部体型系数;
 - μ₂ ——风压高度变化系数;
 - λ ——长细比;
 - φ 一弯矩作用平面内轴心受压的稳定系数;
 - $\phi_{\rm E}$ ——地震作用的组合值系数;
- ϕ_{TM} 温湿度作用的组合值系数;
- $\phi_{\rm W}$ ——风荷载的组合值系数。

3 材 料

3.1 一般 规 定

- 3.1.1 GRC 外墙材料应满足结构安全性、耐久性和环境保护等要求。
- **3.1.2** GRC 外墙应采用燃烧性能满足设计要求的材料,并应符合消防规定。
- **3.1.3** GRC 外墙用原材料,均应具有产品合格证、质量保证书及相关性能检测报告。
- **3.1.4** GRC 原材料及构件材料性能应符合现行行业标准《玻璃纤维增强水泥外墙板》JC/T 1057 或《玻璃纤维增强水泥(GRC)装饰制品》JC/T 940 的有关规定。

3.2 金属材料

- **3.2.1** GRC 外墙选用的金属支承结构材料应符合现行国家标准《优质碳素结构钢》GB/T 699、《碳素结构钢》GB/T 700 或《铝合金建筑型材》GB/T 5237 的规定。
- **3.2.2** GRC 背附钢架用轻型钢、结构型钢或铝合金型材预制, 其材质应符合国家现行相关标准的规定或设计要求。
- **3.2.3** 紧固件规格应根据计算确定,应具有足够的承载力和可靠性,螺栓、锚栓、铆钉等紧固件应分别符合国家现行有关标准的规定。
- 3.2.4 GRC 构件中的预埋件应采取防腐处理或采用不锈钢材质,严禁采用预埋钢筋代替预埋件。
- **3.2.5** 焊接材料应符合国家现行相关标准的规定,所选用的焊条型号应与金属结构材料相匹配。
- 3.2.6 GRC 外墙用钢材必须采取防腐蚀措施, 背附钢架及连接

件宜采用整体热浸镀锌,镀锌层厚度应符合设计要求,镀锌质量应符合现行国家标准《金属覆盖层 钢铁制件热浸镀锌层技术要求及试验方法》GB/T 13912 的规定,镀锌层破坏后应涂刷富锌涂料。

3.3 建筑密封材料

- **3.3.1** GRC 外墙用建筑密封材料应符合国家现行相关标准的规定及设计要求。
- 3.3.2 结构密封胶应符合现行国家标准《建筑用硅酮结构密封胶》GB 16776 的规定;建筑密封胶应符合国家现行标准《硅酮和改性硅酮建筑密封胶》GB/T 14683、《混凝土接缝用建筑密封胶》JC/T 881、《石材用建筑密封胶》GB/T 23261 或《聚氨酯建筑密封胶》JC/T 482 的规定。密封胶条应符合国家现行相关标准的规定。
- **3.3.3** 在使用密封胶时,应符合材料制造商关于产品使用及接缝尺寸限制书面说明的要求。
- 3.3.4 GRC 外墙中采用密封胶时, 应符合下列规定:
- 1 密封胶应与 GRC 面板材料具有良好的相容性,并不应产生影响饰面效果的污染;
- **2** 建筑密封胶应能抵抗的接缝位移不超过接缝宽度的 ±25%。

3.4 其他材料

- **3.4.1** GRC 外墙用表面防护材料应符合国家现行有关产品标准的规定及设计要求。宜选用混凝土专用防护剂,防水性应大于50%,耐污染等级应达到1级。
- 3.4.2 GRC 外墙用保温材料应符合国家现行有关标准的规定及设计要求。在设计及制作 GRC 构件时,可将聚苯板、岩棉、玻璃棉、泡沫玻璃等保温材料复合在 GRC 面板中,形成复合保温一体化产品;加入其他隔声、隔热或加强作用的各种填充材料应

符合国家相关标准和设计要求。

3.4.3 GRC 外墙用锚固胶性能应符合现行行业标准《混凝土结构工程用锚固胶》JG/T 340 的规定。

4 建筑设计

4.1 一般规定

- **4.1.1** GRC 外墙建筑设计应根据建筑物的使用功能、周围环境、建筑设计要求、技术经济分析,合理选择确定。
- **4.1.2** GRC 外墙的空间形状、表面造型、质感及色彩等应符合建筑立面设计要求,还应与制造工艺水平相适应。
- **4.1.3** GRC 外墙的分格尺寸、建筑构造、接缝与连接等应满足建筑设计的要求。
- 4.1.4 GRC 外墙设计应对 GRC 构件表面提出防护处理要求。
- 4.1.5 GRC 外墙设计应便于维护、清洁和更换。

4.2 性能与检测要求

- **4.2.1** GRC 外墙性能设计应根据建筑物的类别、高度、体型和建筑物所在地的地理、气候、环境等条件综合分析确定。
- **4.2.2** GRC 外墙抗风压性能应满足在风荷载标准值作用下,其变形不超过本标准规定值,且不发生任何损坏。
- **4.2.3** GRC 外墙及其围护结构的气密性能指标不应大于 1.2m³/(m²•h),并应符合相关建筑节能设计标准的要求。
- 4.2.4 GRC 外墙的水密性能应符合设计要求。
- 4.2.5 GRC 外墙的平面内变形性能设计应符合下列规定:
- 1 当进行非抗震设计时,应按主体结构弹性层间位移角限值确定;
- **2** 当进行抗震设计时,应按主体结构弹性层间位移角限值的 3 倍确定。
- **4.2.6** GRC 外墙及其围护结构的传热系数应按现行国家标准《民用建筑热工设计规范》GB 50176 的规定确定,并应满足国家

现行标准《公共建筑节能设计标准》GB 50189、《居住建筑节能检测标准》JGJ/T 132、《夏热冬冷地区居住建筑节能设计标准》JGJ 134、《严寒和寒冷地区居住建筑节能设计标准》JGJ 26 或《夏热冬暖地区居住建筑节能设计标准》JGJ 75 的要求。

- **4.2.7** GRC 外墙耐撞击性能应满足设计要求。人员流动密度大或青少年、幼儿活动的公共建筑的 GRC 外墙,耐撞击性能指标不应低于现行国家标准《建筑幕墙》GB/T 21086 的有关规定。
- **4.2.8** GRC 构件应能承受自重和设计要求的附件重量,并应能可靠地传递到主体结构。在自重标准值作用下,水平受力构件在单块面板两端跨距内的最大挠度不应超过该面板两端跨距的 *l*/500。
- **4.2.9** GRC 外墙及其围护结构的隔声性能设计应根据建筑物的使用功能和环境条件设计确定。
- **4.2.10** GRC 外墙的性能检测项目,应包括抗风压性能,必要时可增加平面内变形和其他性能检测。
- **4.2.11** GRC 外墙的性能检测,试件的材质、构造、安装施工方法应与实际工程相同。
- 4.2.12 GRC 外墙性能检测中,当安装缺陷使某项性能未达到规定要求时,可在改进安装工艺,修补缺陷后重新进行检测。检测报告中应包括改进内容,施工时应按改进后的安装工艺实施;当设计或材料缺陷导致外墙性能检测未达到规定值域时,应停止检测,修改设计或更换材料后,方可重新制作试件,另行检测。

4.3 建筑构造设计

- **4.3.1** GRC 外墙的建筑构造设计,应满足安全、适用、绿色、美观的原则,还应便于制作、安装、维修保养和局部更换。
- **4.3.2** GRC 外墙工程应选用具有防潮性能或采取隔汽、防潮构造措施的保温材料。保温材料应符合国家现行防火相关标准的规定。
- 4.3.3 GRC 外墙工程设计,应有防止雨水渗入保温层内的构造

措施: 对于檐口、阳台及其他凸出部位, 应有雨水导排措施。

- **4.3.4** GRC 构件连接部位应有防止构件间摩擦产生噪声的措施。
- **4.3.5** 不同金属材料相接触部位,应设置绝缘衬垫或采取其他有效的防腐措施。
- **4.3.6** GRC 外墙的立面分格尺寸应根据建筑物的设计风格、GRC 构件的自身特点以及构件的制造成本、运输安装条件等因素综合确定。
- 4.3.7 GRC 构件的接缝宽度应能满足自身的变形和位移要求。

4.4 GRC 构件的构造与连接设计

- 4.4.1 GRC 平板构造应符合下列规定:
- 1 GRC 平板厚度不宜小于 25mm; 高层建筑、重要建筑及 临街建筑的 GRC 平板厚度不宜小于 30mm;
 - 2 采用四点支承的单块 GRC 平板的面积不宜大于 1.0 m²;
- **3** GRC 平板的锚固构造可采用预埋方式或后锚固方式,且 其有效锚固深度不应小于板厚的 1/2。当采用后锚固方式时,应 采用背栓或短槽后置挂件等锚固形式,且锚固件与 GRC 板在锚 固处应采用锚固胶胶接处理;
- **4** GRC 平板边缘与支承点间的距离应小于支承间距的1/2, 目应大于 85mm;
- 5 采用短槽后置挂件锚固连接的 GRC 平板,其平板外墙高度不宜大于 24m。
- 4.4.2 GRC 带肋板的结构构造应符合下列规定:
 - 1 GRC 带肋板的面板厚度不应小于 10mm;
- **2** GRC 带肋板肋的截面尺寸应按结构计算确定。当采用单层肋截面时,肋高不应小于 30mm,肋厚不应小于 20mm; 当采用夹芯肋时,肋高不应小于 60mm,肋截面厚度不应小于10mm。
- 4.4.3 GRC 带肋板的其他构造设计宜符合下列规定:
 - 1 板面最大尺寸不宜大于 4500mm;

- 2 板肋的跨高比不宜小于16。
- 4.4.4 GRC 背附钢架板的构造要求应符合下列规定:
- 1 GRC 面板厚度应按结构计算确定,且厚度不应小于 10mm; GRC 面板的支承间距应按结构计算确定;面板边缘与相 邻支承点间的间距应小于支承间距的 1/2;面板边缘应制作具有 足够抵抗板边变形的加强肋;
- **2** 背附钢架的龙骨间距应与面板支承间距一致,龙骨截面尺寸应按结构计算确定;
- **3** GRC 面板与背附钢架应采用柔性锚杆连接,其连接构造 应能保证面板受到的垂直于板面的荷载可靠地传递到背附钢架 上,且使面板与背附钢架沿平行于板面方向具有满足设计要求的 相对位移能力;
- **4** GRC 面板与背附钢架间应设置重力锚杆。重力锚杆的连接构造应能使 GRC 面板自重可靠地传递到背附钢架上;重力锚杆的数量应由结构计算确定,但不应少于柔性锚杆的列数。
- **4.4.5** 对于地震设防地区,当对 GRC 背附钢架板有抗震锚固构造设计要求时,抗震锚固构造设计应符合下列规定:
 - 1 抗震锚固件应设置于面板的重心位置;
- **2** 抗震锚固件沿水平方向应能承受面内水平地震作用;沿垂直方向应具有足够的相对于主体结构的位移能力;
 - 3 抗震锚固的构造尺寸应按锚固抗剪试验实测确定。
- **4.4.6** GRC 构件与主体结构或支承结构应采用柔性连接,且应符合下列规定:
- 1 对主体结构允许误差、GRC 构件制作误差及施工安装误差等应具有三维可调适应能力;对于双曲面异形板,还应具有多自由度可调适应能力;
- 2 对 GRC 构件与主体结构间因温湿度作用产生的相对变形或位移应具有适应能力;且应将这种温湿度作用在 GRC 构件内产生的应力控制在设计允许的范围内;
 - 3 应满足 GRC 构件平面内变形性能的要求。

4.5 防火与防雷设计

- **4.5.1** GRC 外墙工程的防火设计应符合现行国家标准《建筑设计防火规范》GB 50016 的规定。
- **4.5.2** GRC 构件与周边防火分隔构件间的缝隙和与实体墙面洞口边缘间的缝隙,应进行防火封堵设计。
- **4.5.3** GRC 外墙工程的防火封堵构造系统,在正常使用条件下,应具有伸缩变形能力、密封性和耐久性;遇火状态下,应在规定的耐火极限内,不发生开裂或脱落。
- **4.5.4** GRC 外墙工程防火封堵构造系统的填充料及其保护性面层材料,应采用不燃烧材料。
- 4.5.5 GRC 构件与各层楼板、隔墙外沿间的缝隙应进行防火封堵设计。当采用岩棉封堵时,其厚度不应小于 100mm, 并应填充密实; 楼层间水平防烟带的岩棉宜采用厚度不小于 1.5mm 的镀锌钢板或者不锈钢板承托; 承托板与主体结构、外墙结构及承托板之间的缝隙宜填充防火密封材料。
- 4.5.6 同一件 GRC 构件,不宜跨越建筑物的两个防火分区。
- **4.5.7** GRC 外墙工程的防雷设计应符合国家现行标准《建筑物防雷设计规范》GB 50057 和《民用建筑电气设计规范》JGJ 16的有关规定。外墙的金属框架应与主体结构的防雷体系可靠连接,连接部位应清除非导电保护层。

5 结构设计基本规定

5.1 一般规定

- **5.1.1** GRC 外墙应按围护结构设计,应具有足够的承载力、抗裂性、刚度、稳定性和相对于主体结构的位移能力。
- **5.1.2** GRC 构件与主体结构应采用柔性连接。当采用螺栓连接时,应有可靠的防松、防滑措施;当采用短槽后置挂件连接时,应有可靠的防脱、防滑措施。
- **5.1.3** GRC 外墙结构设计应按弹性方法计算作用效应,并应按本标准第 5.4 节的规定进行作用效应组合。作用效应应符合下列规定:
- 1 非抗震设计时,应计算重力荷载、风荷载和温湿度作用效应;
- **2** 抗震设计时,应计算重力荷载、风荷载、地震作用效应和温湿度作用效应。
- **5.1.4** GRC 构件结构设计尚应分别计算生产、施工阶段的作用效应,并应分别进行作用效应组合。
- **5.1.5** GRC 外墙结构构件应按各效应组合中的最不利组合进行设计。
- **5.1.6** 对于承载力极限状态, GRC 外墙结构构件应按下列规定 验算承载力:
 - 1 无地震作用效应组合时,承载力应符合下式要求:

$$\gamma_0 S \leqslant R \tag{5.1.6-1}$$

2 有地震作用效应组合时,承载力应符合下式要求:

$$S_{\rm E} \leqslant \frac{R}{\gamma_{\rm RE}} \tag{5.1.6-2}$$

式中: S — 荷载效应按基本组合的设计值;

- S_E 地震作用效应和其他荷载效应按基本组合的设计值:
 - R ——GRC 构件及其他结构构件的抗力设计值;
- γ₀ ——GRC 构件及其他结构构件重要性系数,取不小于1.0;
- γ_{RE} ——GRC 构件及其他结构构件承载力抗震调整系数, 取 1.0。
- **5.1.7** 对于正常使用极限状态,荷载应按标准组合,GRC 构件应验算抗裂承载力和挠度,其他结构构件应验算挠度,并应符合下列规定:
 - 1 GRC 构件抗裂承载力应符合下式要求:

$$S_{\gamma} \leqslant R_{\gamma} \tag{5.1.7-1}$$

式中: S_{γ} — 荷载效应按标准组合的设计值;

Ry ——GRC 构件抗裂承载力设计值。

2 GRC 构件或其他结构构件的挠度应符合下式要求:

$$u \leqslant u_{\lim} \tag{5.1.7-2}$$

式中: u ——GRC 构件或其他结构构件在风荷载标准值作用下或 在风荷载标准值与永久荷载标准值共同作用下产生 的挠度值;

ulim ——GRC 构件或其他结构构件的挠度限值。

- **3** 双向受弯的杆件,两个方向的挠度应分别符合公式 (5.1.7-2) 的规定。
- **5.1.8** 根据锚固连接破坏后果的严重程度,GRC 构件的预埋锚固设计或后锚固设计应按本标准表 5.1.8 的规定确定相应的安全等级,且不应低于 GRC 构件自身的安全等级。

表 5.1.8 预埋锚固连接与后锚固连接的安全等级

安全等级	破坏后果	锚固类型
一级	很严重	重要的锚固
二级	严重	一般的锚固

- **5.1.9** GRC 构件预埋锚固连接或后锚固连接的承载力应按下列规定验算:
- **1** 无地震作用效应组合, 预埋锚固连接或后锚固连接的承载力应符合下式要求:

$$\gamma_{\Lambda} S \leqslant R \tag{5.1.9-1}$$

2 有地震作用效应组合, 预埋锚固连接和后锚固连接的承载力应分别符合下列公式要求:

预埋锚固连接:

$$\gamma_{\rm A} S \leqslant R/\gamma_{\rm RE} \tag{5.1.9-2}$$

后锚固连接:

$$\gamma_{\rm A} S \leqslant kR/\gamma_{\rm RE} \tag{5.1.9-3}$$

- 式中: γ_A 预埋锚固连接或后锚固连接重要性系数,对一级、二级的锚固安全等级,分别取 1.2、1.1,且 $\gamma_A \geqslant \gamma_0$; 对有地震作用效应组合取 1.0;
 - S——无地震作用效应或有地震作用效应的基本组合设计值,按现行国家标准《建筑结构荷载规范》GB 50009 和《建筑抗震设计规范》GB 50011 的规定进行计算;

R — 锚固承载力设计值;

k ——地震作用下锚固承载力降低系数, 按表 5.1.9 确定:

γ_{RE} — 锚固承载力抗震调整系数,取 1.0。

表 5.1.9 地震作用下锚固承载力降低系数 k

波坏形态及锚栓		产力性质	受拉	受剪
	锚栓或植筋钢材	破坏	1.0	1.0
	机械锚栓	扩底型锚栓	0.8	0.7
ODG ntdr		膨胀型锚栓	0.7	0.6
GRC 破坏		特殊倒锥形锚栓	0.8	0.7
	化学锚栓	普通化学锚栓	0.7	0.6
混合破坏	0.7	_		

5.1.10 GRC 构件的结构设计也可采用有限元法进行计算。

5.2 材料力学性能

5.2.1 钢材的强度设计值应按现行国家标准《钢结构设计标准》 GB 50017 的规定采用,也可按表 5.2.1-1 采用;锚栓的性能等级应按所用钢材的抗拉强度标准值 f_{stk} 及屈强比 f_{yk}/f_{stk} 确定,相应性能指标应按表 5.2.1-2 采用;普通钢筋的屈服强度值 f_{yk} 、极限强度标准值 f_{stk} 应按表 5.2.1-3 采用。

钢材牌号 厚度或直径 d (mm) 抗拉、抗压、抗弯 抗剪 端面承压 $d \leq 16$ 215 125 Q235 $16 < d \le 40$ 205 120 325 $40 < d \le 60$ 200 115 $d \leq 16$ 310 180 Q345 $16 < d \le 35$ 295 170 400 $35 < d \le 50$ 265 155

表 5.2.1-1 钢材的强度设计值 (N/mm²)

注:表中厚度是指计算点的钢材厚度;对轴心受力构件是指截面中较厚板件的 厚度。

性食		3.6	4.6	4.8	5.6	5.8	6.8	8.8
抗拉强度 标准值	$f_{ m stk}$ (N/mm 2)	300	40	00	50	00	600	800
屈服强度 标准值	$f_{ m yk}$ 或 $f_{ m s0.2k}$	180	240	320	300	400	480	640
伸长率	85 (%)	25	22	14	20	10	8	12

表 5.2.1-2 碳素钢及合金钢锚栓的性能指标

注: 1 性能等级 3.6 表示: f_{stk} =300 N/mm², f_{yk}/f_{stk} =0.6;

² 伸长率 δ 表示: 试样的标距等于 10 倍直径时的伸长率。

表 5.2.1-3 普通钢筋强度标准值 (N/mm²)

牌号	公称直径 d (mm)	屈服强度标准值 fyk	极限强度标准值 fstk
HPB300	6~22	300	420
HRB335 HRBF335	6~50	335	455
HRB400 HRBF400 RRB400	6~50	400	540
HRB500 HRBF500	6~50	500	630

5. 2. 2 不锈钢的抗拉、抗压强度设计值应按其屈服强度标准值 $\sigma_{0.2}$ 除以系数 1. 15 采用,其抗剪强度设计值可按其抗拉强度设计值的 0. 58 倍采用;不锈钢锚栓的性能等级应按所用钢材的抗拉强度标准值 f_{sk} 及屈服强度标准值 f_{sk} 确定,相应性能指标应按表 5. 2. 2 采用。

表 5.2.2 奥氏体不锈钢锚栓的性能指标

性能等级	螺纹直径 d (mm)	抗拉强度标准值 $f_{\rm stk}$ (N/mm²)	屈服强度标准值 f_{yk} (N/mm²)	伸长值 δ
50	€39	500	210	0. 6 <i>d</i>
70	€24	700	450	0.4d
80	€24	800	600	0. 3 <i>d</i>

注: d 为锚栓公称直径。

5.2.3 铝合金型材的强度设计值应按表 5.2.3 采用。

表 5.2.3 铝合金型材的强度设计值 (N/mm²)

铝合金材料			用于构件	-计算	用于焊接连接计算		
牌号	状态	厚度 (mm)	抗拉、抗压 和抗弯	抗剪	焊件热影响区 抗拉、抗压和 抗弯	焊件热影响区 抗剪	
0001	T4	所有	90	55	140	80	
6061	Т6	所有	200	115	100	60	
2020	T5	所有	90	55	60	35	
6063	Т6	所有	150	85	80	45	
	T) c	≪10	135	75	75	45	
2020 4	T5	>10	125	70	70	40	
6063A	Tre	≤10	160	90	90	50	
	Т6	>10	150	85	85	50	
5000	O/F	所有	90	55	210	120	
5083	H112	所有	90	55	170	95	
3003	H24	≪4	100	60	20	10	
0001	H34	≪4	145	85	35	20	
3004	H36	€3	160	95	40	20	

- 5.2.4 耐候钢强度设计值应按本标准附录 A 取值。
- 5.2.5 钢结构连接强度设计值应按本标准附录 B 取值。
- **5.2.6** GRC 材料强度等级应按 GRC 材料抗弯强度标准值确定。GRC 材料抗弯强度标准值(f_{Mk})和比例极限强度标准值(f_{Lk})应按表 5.2.6 采用。

表 5.2.6 GRC 材料强度标准值 (N/mm²)

强度种类		强度	等级	
	8	10	15	18
$f_{ m Lk}$	5	6	6	7
f_{Mk}	8	10	15	18

5.2.7 GRC 材料的抗拉强度标准值 (f_{Uk}) 和抗拉初裂强度标

准值 $(f_{\rm Rk})$ 按下列公式计算:

$$f_{\text{Uk}} = 0.4 f_{\text{Mk}}$$
 (5. 2. 7-1)
 $f_{\text{Rk}} = f_{\text{Lk}}/1.5$ (5. 2. 7-2)

式中: f_{IR} ——GRC 材料抗拉强度标准值 (N/mm^2) :

f_{Mk} —— GRC 材料抗弯强度标准值 (N/mm²);

 f_{Bk} ——GRC 材料抗拉初裂强度标准值 (N/mm²);

 f_{Lk} GRC 材料比例极限强度标准值 (N/mm^2) 。

5.2.8 GRC 及其他材料的弹性模量可按表 5.2.8 的规定采用。

表 5.2.8 材料的弹性模量 E (N/mm²)

材料	E
GRC	2.0×10^{4}
铝合金	0.70×10^5
钢、不锈钢 (不含锚栓、螺杆)	2.06×10^{5}
锚栓、螺杆	2.0×10^{5}

5.2.9 GRC 及其他材料的泊松比可按表 5.2.9 的规定采用。

表 5.2.9 材料的泊松比 v

材料	ν
GRC	0. 24
铝合金	0.30
钢、不锈钢	0. 30

5.2.10 GRC 及其他材料的线膨胀系数可按表 5.2.10 的规定采用。

表 5.2.10 材料的线膨胀系数 α (1/°C)

材料	α
GRC	$(1.0\sim1.5)\times10^{-5}$
铝合金	2. 40×10 ⁻⁵
钢材	1. 20×10 ⁻⁵

续表 5.2.10

材料	α
砖砌体	0.50×10 ⁻⁵
不锈钢板	1. 60×10 ⁻⁵
混凝土	1.00×10^{-5}

5.3 荷载与作用

5.3.1 GRC 及其他材料的重力密度标准值可按表 5.3.1 的规定采用。

表 5.3.1 材料的重力密度 r_g (kN/m³)

材料	$r_{ m g}$
GRC	18~20
钢材	78. 5
铝合金	28. 0
玻璃棉	0.5~1.0
岩棉	0.5~2.5

5.3.2 GRC 构件的风荷载标准值应按下式计算,并且不应小于 1.0kN/m^2 :

$$w_{k} = \beta_{gz} \mu_{sl} \mu_{z} w_{0} \qquad (5. 3. 2)$$

式中: wk——风荷载标准值(kN/m²);

 β_{gz} 一 阵风系数,按现行国家标准《建筑结构荷载规范》 GB 50009 的规定确定;

μ_{sl}——风荷载局部体型系数,按现行国家标准《建筑结构荷载规范》GB 50009 的规定确定;

μ₂——风压高度变化系数,按现行国家标准《建筑结构 荷载规范》GB 50009 的规定确定;

w₀──基本风压(kN/m²),按现行国家标准《建筑结构

荷载规范》GB 50009 的规定确定。

- **5.3.3** 当 GRC 构件安装高度大于 200m 或体型、风荷载环境复杂时,宜进行风洞试验确定风荷载。
- **5.3.4** 垂直于 GRC 构件面板平面的分布水平地震作用标准值 可按下式计算:

$$q_{\rm Ek} = \beta_{\rm E} \alpha_{\rm max} G_{\rm k} / A \tag{5.3.4}$$

式中: q_{Ek} ——垂直于 GRC 构件面板平面的分布水平地震作用标准值 (kN/m^2) ;

 $\beta_{\rm F}$ ——动力放大系数,可取 5.0;

 α_{max} ——水平地震影响系数最大值,应按表 5.3.4 确定;

 G_k ——GRC 构件(包括 GRC 构件和钢架)的重力荷载 标准值(kN);

A ——GRC 构件平面面积 (m²)。

表 5.3.4 水平地震影响系数最大值 α_{max}

抗震设防烈度	6度	7度	8度
$\alpha_{ ext{max}}$	0.04	0.08(0.12)	0.16(0.24)

注: 7、8 度时括号内数值分别用于设计基本地震加速度为 0.15g 和 0.30g 的地区。

5.3.5 平行于 GRC 构件面板平面的集中水平地震作用标准值可按下式计算:

$$P_{\rm Ek} = \beta_{\rm E} \alpha_{\rm max} G_{\rm k} \tag{5.3.5}$$

式中: P_{Ek} ——平行于 GRC 构件面板平面的集中水平地震作用标准值 (kN)。

- **5.3.6** GRC 构件的支承结构以及连接件、锚固件所承受的地震作用标准值,应包括 GRC 构件传来的地震作用标准值和其自身重力荷载标准值产生的地震作用标准值。
- **5.3.7** GRC 构件的温度应力宜根据支承约束情况按表 5.3.7 确定。

表 5.3.7 GRC 构件的温度应力值 σ_{ts} (N/mm²)

环境条件	抗拉面	温度梯度 (℃)	σ_{ts}
		5	0.4~0.8
冬季	潮湿	10	0.9~1.7
		15	1.4~2.5
		5	0.2~0.5
夏季		10	0.4~0.9
	干燥	15	0.6~1.3
		20	0.8~1.8

5.3.8 GRC 构件的湿度应力宜根据支承结构的约束情况按表 5.3.8 确定。

表 5.3.8 GRC 构件的湿度应力值 σ_{ss} (N/mm²)

完全限制	短期	全部使用期
室内	1.3~1.8	0.7~0.9
室外	1.0~1.5	0.5~0.8

5.4 作用效应组合

- **5.4.1** GRC 外墙结构构件、预埋件、连接件按承载力极限状态设计时,沿垂直于板面方向的荷载与作用效应按下列规定进行组合:
 - 1 无地震作用效应组合时,应按下式进行:

$$S = \gamma_{G} S_{Gk} + \psi_{W} \gamma_{W} S_{Wk} + \psi_{TM} \gamma_{TM} S_{TMk}$$
 (5. 4. 1-1)

2 有地震作用效应组合时,应按下式进行:

$$S = \gamma_{\rm G} S_{\rm Gk} + \psi_{\rm W} \gamma_{\rm W} S_{\rm Wk} + \psi_{\rm E} \gamma_{\rm E} S_{\rm Ek} + \psi_{\rm TM} \gamma_{\rm TM} S_{\rm TMk}$$

(5, 4, 1-2)

式中: S — 荷载和作用效应按基本组合的设计值;

 S_{Gk} ——永久荷载效应标准值;

Swk、SEk、STMk ——分别为风荷载、地震作用和温湿度作用效

应标准值(按不同的组合情况,三者分别 作为第一个、第二个和第三个可变荷载和 作用效应);

 γ_{G} 、 γ_{W} 、 γ_{E} 、 γ_{TM} ——各荷载和作用的分项系数,按本标准第 5.4.3条的规定取值;

 ϕ_{W} 、 ϕ_{E} 、 ϕ_{TM} ——分别为风荷载、地震作用和温湿度作用的组合值系数,按本标准第 5.4.4 条的规定取值。

- 5.4.2 GRC 构件应按荷载和作用效应的最不利组合进行设计。
- 5.4.3 荷载和作用的分项系数应按下列规定确定:
- 1 永久荷载分项系数 γ_G : 当其效应对结构不利时,应取 1.2; 当其效应对结构有利时,应取 1.0;
 - 2 风荷载分项系数 γ_w 应取 1.4;
 - 3 地震作用分项系数 γ 应取 1.3;
 - 4 温湿度作用分项系数 γ_{TM} 应取 1.2。
- 5.4.4 当有两个及两个以上可变荷载或作用(风荷载、地震作用和温湿度作用)效应参与组合时,第一个可变荷载或作用效应的组合值系数可取 1.0;第二个可变荷载或作用效应的组合值系数可取 0.6;第三个可变荷载或作用效应的组合值系数可取 0.2。
- **5.4.5** 对于水平安装或水平倒挂的 GRC 构件,可不考虑地震作用效应的组合。
- **5.4.6** 当 GRC 构件进行抗裂验算时,其荷载与作用效应组合 应按标准组合,并应按下列规定计算:
- 1 对于 GRC 竖直外墙,沿垂直于板面方向的荷载与作用效应组合应按下式计算:

$$S = \gamma_{\rm w} S_{\rm Wk} + \gamma_{\rm TM} S_{\rm TMk}$$
 (5. 4. 6-1)

2 对于倾斜安装的 GRC 外墙,沿垂直于板面方向的荷载与作用效应组合应按下列公式计算:

当重力荷载对结构有利时:

$$S = \gamma_{W} S_{Wk} + \gamma_{TM} S_{TMk}$$
 (5. 4. 6-2)

当重力荷载对结构不利时:

$$S = \gamma_G S_{Gk} + \gamma_W S_{Wk} + \gamma_{TM} S_{TMk}$$
 (5. 4. 6-3)

式中: S — 荷载与作用按标准组合设计值:

S_{Gk}、S_{Wk}、S_{TMk} — 分别为重力荷载、风荷载、温湿度作用效 应标准值:

γ_G、γ_W、γ_{TM} — 分别为重力荷载、风荷载和温湿度作用效 应的分项系数,取1.0。

- 5.4.7 GRC 构件及其他结构构件进行挠度验算时,其荷载与作 用效应按标准组合,目应符合下列规定:
- 1 对于 GRC 竖直外墙, GRC 构件及其支承结构沿垂直干 板面方向的荷载与作用效应组合值应按下式计算:

$$S = \gamma_{\rm w} S_{\rm Wk} \tag{5.4.7-1}$$

2 对于倾斜安装的 GRC 外墙, GRC 构件及其支承结构 沿垂直于板面方向的荷载与作用效应组合值应按下列公式 计算:

当重力荷载对结构有利时:

$$S = \gamma_{w} S_{wk} \tag{5.4.7-2}$$

当重力荷载对结构不利时:

$$S = \gamma_{G} S_{Gk} + \gamma_{W} S_{Wk} \tag{5.4.7-3}$$

式中: S——荷载与作用按标准组合设计值;

 S_{Gk} 、 S_{Wk} — 分别为重力荷载、风荷载标准值;

 $\gamma_{\rm G}$ 、 $\gamma_{\rm W}$ ——分别为重力荷载、风荷载的分项系数,取 1.0。

5.5 连接设计

- 5.5.1 主体结构或结构构件, 应能承受 GRC 构件传递的荷载 和作用。连接件与主体结构的锚固承载力设计值应大于连接件本 身的承载力设计值。
- 5.5.2 GRC 构件与主体结构的连接应进行承载力设计,其支承 结构连接处的连接件、焊缝、螺栓等设计, 应符合国家现行标准

《钢结构设计标准》GB 50017、《高层民用建筑钢结构技术规程》 JGJ 99 和《铝合金结构设计规范》GB 50429 的有关规定。连接 处的受力螺栓不应少于 2 个。

- **5.5.3** GRC 构件与支承结构或主体结构连接时,其自重应支承 在其下部连接节点上,否则应进行抗拉承载力和开裂验算。
- **5.5.4** 当 GRC 外墙采用立柱、横梁等组成的支承结构时,其立柱宜悬挂在主体结构上。
- 5.5.5 GRC 构件与主体混凝土结构应通过预埋件连接, 预埋件 应在主体结构混凝土施工时埋入, 预埋件的位置应准确; 当没有条件采用预埋件连接时, 应采用其他可靠的连接措施, 并应通过 试验确定其承载力。
- **5.5.6** 由锚板和对称配置的锚固钢筋所组成的受力预埋件设计,可按本标准附录 C 确定。
- **5.5.7** 槽式预埋件的预埋钢板及其他连接措施,应按现行国家标准《钢结构设计标准》GB 50017 的规定确定,并宜通过试验确认其承载力。
- **5.5.8** GRC 构件支承结构与主体结构的后锚固连接设计,应按现行行业标准《混凝土结构后锚固技术规程》JGJ 145 的规定确定,并应进行承载力现场试验。
- **5.5.9** GRC 构件与砌体结构连接时,宜在连接部位的主体结构上增设钢筋混凝土或钢结构梁、柱等支承结构。轻质填充墙不应作为 GRC 构件的支承结构。

5.6 承载力极限状态设计

5.6.1 对于风荷载控制的基本组合,GRC 构件截面应力设计值 验算应符合下列公式要求:

$$\gamma_0 \sigma \leqslant \frac{K f_{\text{Mk}}}{\gamma_m \gamma_b}$$
 (5. 6. 1-1)

$$K = \frac{MOR_A}{MOR_E} \quad \left(\frac{f_{Lk}}{f_{Mk}} \leqslant K \leqslant 1\right)$$
 (5. 6. 1-2)

当缺乏 GRC 老化试验数据时, GRC 构件的截面应力设计值 验算可符合下式要求:

$$\gamma_0 \sigma \leqslant \frac{f_{1k}}{\gamma_m \gamma_b} \tag{5.6.1-3}$$

 σ — 按基本组合, GRC 板截面应力设计值;

 f_{Mk} — GRC 材料抗弯强度标准值;

 $K \longrightarrow GRC 强度衰减系数;$

 γ_m — GRC 材料分项系数,取 1.4;

γ_b — GRC 标准试件与 GRC 构件抗弯性能差异系数, 按本标准第 5. 6. 2 条的规定采用;

MOR_A —— GRC 材料在自然大气暴露条件下达设计使用年限 后的抗弯强度值;

MOR_E — GRC 材料标准龄期抗弯强度值;

f_{1k} —— GRC 材料比例极限强度标准值。

- **5.6.2** GRC 标准试件与 GRC 构件抗弯性能差异系数 γ_b 应符合下列规定:
- 1 GRC 标准试件与矩形截面 GRC 构件的抗弯性能差异系数 γ, 应按表 5. 6. 2-1 确定。

表 5. 6. 2-1 GRC 标准试件与矩形截面 GRC 构件的 抗弯性能差异系数 γ_b

板厚 h (mm)	6~10	12~16	20	40	60	100	200	300
$\gamma_{ m b}$	1.0	1.05	1.08	1. 15	1. 2	1. 25	1. 37	1.5

2 GRC 标准试件与倒 L 形、箱形带翼缘截面(图 5. 6. 2-1) GRC 构件的抗弯性能差异系数 γ_b 应根据其截面中性轴到受拉区 边缘的距离 e 按表 5. 6. 2-2 确定。

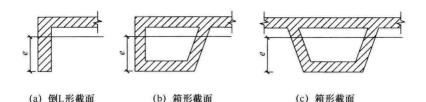


图 5.6.2-1 GRC 构件的倒 L 形、箱形带翼缘的截面示意

表 5. 6. 2-2 GRC 标准试件与异形截面、复合受力状态 GRC 构件的抗弯性能差异系数 γ.

e (mm)	3~5	6~8	10	20	30	50	100	150
$\gamma_{ m b}$	1.0	1.05	1.08	1. 15	1.2	1. 25	1. 37	1.5

3 矩形截面 GRC 构件在弯拉应力与轴拉应力复合状态下,截面中性轴到受拉区边缘的距离 e (图 5. 6. 2-2) 应按下式计算,GRC 标准试件与矩形截面 GRC 构件的抗弯性能差异系数 γ_b 应按表 5. 6. 2-2 确定。

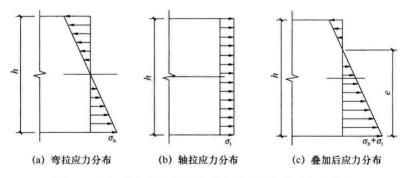


图 5.6.2-2 弯拉应力与轴拉应力状态下的截面应力分布

$$e = \frac{0.5h\sigma}{\sigma_b} \tag{5.6.2-1}$$

式中: e — 荷载按基本组合或标准组合计算的弯拉应力和轴拉应力叠加后,截面中性轴到受拉区边缘的距离 (mm); σ — 重力荷载、风荷载和温湿度作用按基本组合或标准组合计算的 GRC 构件截面应力设计值 (N/mm²);

σ_b — 重力荷载和风荷载按基本组合或标准组合计算的 GRC 构件截面弯拉应力设计值 (N/mm²);

h ——GRC 构件面板厚度 (mm)。

4 倒 L 形、箱形带翼缘 GRC 构件在弯拉应力与轴拉应力复合状态下,截面中性轴到受拉区边缘的距离 e (图 5. 6. 2-3) 应按下式计算,GRC 标准试件与倒 L 形、箱形带翼缘 GRC 构件的抗弯性能差异系数 γ_b 应按表 5. 6. 2-2 确定。

$$e = e_0 \left(1 + \frac{\sigma_1}{\sigma_0} \right)$$
 (5. 6. 2-2)

式中: e_0 — 按异形截面尺寸计算的中性轴到受拉区边缘的距离 (mm);

σ₁——温湿度效应按基本组合或标准组合计算的 GRC 构件截面轴拉应力设计值 (N/mm²)。

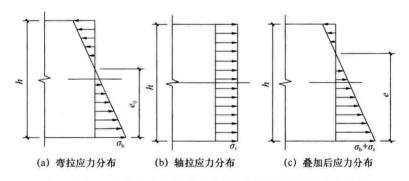


图 5.6.2-3 弯拉应力与轴拉应力状态下异形截面的应力分布

5.6.3 对于温湿度效应控制的基本组合,GRC 构件截面应力设计值验算应符合下式要求:

$$\gamma_0 \sigma \leqslant \frac{f_{\text{AUk}}}{\gamma_m}$$
 (5. 6. 3-1)

当缺乏 GRC 老化试验数据时, GRC 构件截面应力设计值验算可符合下式要求:

$$\gamma_0 \sigma \leqslant \frac{f_{\text{Bk}}}{\gamma_m}$$
 (5. 6. 3-2)

式中: σ——按基本组合, GRC 构件截面应力设计值 (N/mm²);

 f_{AUk} ——GRC 材料老化后的抗拉强度标准值 (N/mm²);

 f_{Bk} ——GRC 材料抗拉初裂强度标准值 (N/mm^2) ;

 γ_0 — 构件重要性系数, $\gamma_0 \le 1.0$; 对于抗震设计, 不考虑 构件的重要性系数;

 γ_m ——GRC 材料分项系数,取 1.4。

5.7 抗裂验算

5.7.1 对于风荷载控制的标准组合,其开裂应力设计值应符合下式要求:

$$\sigma_{\rm r} \leqslant \frac{f_{\rm l.k}}{\gamma_{\rm g} \gamma_{\rm b}}$$
 (5. 7. 1)

式中: σ_r ——按标准组合,GRC 构件截面开裂应力设计值(N/ mm^2);

 γ_b ——GRC 标准试件与 GRC 构件的抗弯性能差异系数;

 f_{Lk} ——GRC 材料比例极限强度标准值 (N/mm^2) ;

 γ_g ——GRC 材料抗裂分项系数,取 1.8。

5.7.2 对于温湿度应力控制的标准组合,其开裂应力设计值应符合下式要求:

$$\sigma_{\rm r} \leqslant f_{\rm Bk}/\gamma_{\rm g}$$
 (5.7.2)

式中: f_{Bk} ——GRC 材料抗拉初裂强度标准值 (N/mm^2) ; γ_e ——GRC 材料抗裂分项系数,取 1.8。

5.8 锚固承载力设计

5.8.1 荷载按基本组合,锚固受拉承载力设计值应符合表 5.8.1 的规定。

表 5.8.1 锚固受拉承载力设计规定

破坏类型	设计规定
锚栓钢材破坏	$\gamma_{ m A} N_{ m d} \leqslant F_{ m sk}/\gamma_{ m sN}$

续表 5.8.1

破坏类型	设计规定
GRC 锥体受拉破坏	$\gamma_{ m A} N_{ m d} \leqslant F_{ m ck}/\gamma_{ m cN}$
GRC 劈裂破坏	$\gamma_{ m A} N_{ m d} \leqslant F_{ m spk}/\gamma_{ m spN}$

注: N_d — 荷载按基本组合计算的锚固拉力设计值 (N);

Fsk ——锚栓(或锚杆)钢材破坏受拉承载力标准值(N);

 F_{ck} ——GRC 锥体破坏受拉承载力标准值(N);

 $F_{\rm spk}$ ——GRC 劈裂破坏受拉承载力标准值 (N);

γ_Λ — 锚固连接的重要性系数,按本标准第5.1.8条和第5.1.9条采用;

γ_{sN} — 锚栓钢材破坏受拉承载力分项系数,按本标准表 5.8.5 采用;

 γ_{eN} ——GRC 锥体破坏受拉承载力分项系数,按本标准表 5.8.5 采用;

γ_{soN} — GRC 劈裂破坏受拉承载力分项系数,按本标准表 5.8.5 采用。

5.8.2 荷载按基本组合,锚固受剪承载力应符合表 5.8.2 的规定。

表 5.8.2 锚固受剪承载力设计规定

破坏类型	设计规定
锚栓钢材破坏	$\gamma_{ m A} V_{ m d} \leqslant Q_{ m sk}/\gamma_{ m sV}$
GRC 楔形体破坏	$\gamma_{ m A} V_{ m d} \leqslant Q_{ m ck}/\gamma_{ m cV}$
GRC 剪撬破坏	$\gamma_{ m A} V_{ m d} \leqslant Q_{ m cpk}/\gamma_{ m cpV}$

注: V_d — 荷载按基本组合计算的锚固剪力设计值(N);

Qsk ——锚栓钢材破坏受剪承载力标准值(N);

Qck ——GRC 边缘破坏受剪承载力标准值(N);

Q_{cpk} ——GRC 剪撬破坏受剪承载力标准值(N);

γ_A ——锚固连接的重要性系数,按本标准第 5.1.8 条和第 5.1.9 条采用;

 γ_{sV} ——锚栓钢材破坏受剪承载力分项系数,按本标准表 5.8.5 采用;

 γ_{cV} ——GRC 边缘破坏受剪承载力分项系数,按本标准表 5.8.5 采用;

 γ_{coV} ——GRC 剪撬破坏受剪承载力分项系数,按本标准表 5.8.5 采用。

5.8.3 拉剪复合受力下锚栓或连接螺栓钢材破坏时的承载力, 应符合下列公式要求:

$$\left(\frac{N_{\rm d}}{F_{\rm sd}}\right)^2 + \left(\frac{V_{\rm d}}{Q_{\rm sd}}\right)^2 \leqslant 1 \tag{5.8.3-1}$$

$$F_{\rm sd} = F_{\rm sk}/\gamma_{\rm sN}$$
 (5. 8. 3-2)

$$Q_{\rm sd} = Q_{\rm sk}/\gamma_{\rm sV}$$
 (5. 8. 3-3)

式中: F_{sd} — 锚栓钢材破坏受拉承载力设计值 (N);

Q_{sd} ——锚栓钢材破坏受剪承载力设计值(N)。

5.8.4 拉剪复合受力下 GRC 破坏时的承载力应符合下列公式要求。

$$\left(\frac{N_{\rm d}}{F_{\rm cd}}\right)^{1.5} + \left(\frac{V_{\rm d}}{Q_{\rm cd}}\right)^{1.5} \leqslant 1$$
 (5. 8. 4-1)

$$F_{\rm cd} = F_{\rm ck}/\gamma_{\rm cN}$$
 (5. 8. 4-2)

$$Q_{\rm cd} = Q_{\rm ck}/\gamma_{\rm cV} \tag{5.8.4-3}$$

式中: F_{cd} ——GRC 锥体破坏受拉承载力设计值 (N);

 Q_{cd} ——GRC 边缘破坏受剪承载力设计值(N)。

5.8.5 GRC 构件锚固承载力分项系数 γ_R 宜根据锚固连接破坏类型及 GRC 构件的类型不同,按表 5.8.5 确定。

单块面积大于 3m2 的 GRC背附钢架板、单块 GRC带肋板或用于高层 面积小于 3m2 的 GRC 项次 符号 锚固破坏类型 建筑的 GRC 平板和单块 带肋板或用于 24m 以下 面积小于 3m² 的 GRC 建筑高度的 GRC 平板 带肋板 GRC锥体受拉破坏 1 1.8 YON 3.0 2 γ_{cV} GRC边缘受剪破坏 1.5 2.5 GRC 劈裂破坏 1.8 3.0 3 γ_{spN} GRC剪撬破坏 1.5 2.5 4 γ_{coV} 锚栓钢材受拉破坏 1.2 1.3 5 YIN

表 5.8.5 锚固承载力分项系数

5.8.6 对于 GRC 构件的后锚固抗震设计,其锚固拉力设计值和锚固剪力设计值应按本标准第 5.4.1 条第 2 款的规定进行计算,后锚固受拉、受剪承载力应根据现行行业标准《混凝土结构后锚固技术规程》JGJ 145 的相关公式进行计算,其计算结果应

1.2

YsV

锚栓钢材受剪破坏

1.3

符合本标准第5.1.9条第2款的规定。

- **5.8.7** GRC 平板和 GRC 背附钢架板的锚固承载力标准值可按下列要求确定:
- 1 应根据设计要求,按工厂制作工艺技术规程制作不少于20个锚固受拉试件(尺寸:300mm×300mm),经标准养护后测试锚固受拉承载力,并应按下列公式计算预埋锚固受拉承载力标准值:

$$F_{k} = \overline{F} \left[1 - t_{a}(n-1) \frac{S_{N}}{\overline{F}} \right]$$
 (5. 8. 7-1)

$$S_{\rm N} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (F_i - \overline{F})^2}$$
 (5. 8. 7-2)

式中: Fk ——锚固受拉承载力标准值 (kN);

 \overline{F} — 该批试件锚固受拉承载力平均值 (kN);

 S_N — 该批试件锚固受拉承载力样本方差;

 F_i ——单个试件的锚固受拉承载力 (kN);

n ——样本容量;

 t_{α} 一学生氏函数,按置信度 $1-\alpha$ 和样本容量 n 确定。

2 应根据设计要求,按工厂制作工艺技术规程制作不少于20个锚固受剪试件(尺寸:300mm×300mm),经标准养护后测试锚固受剪承载力,并应按下列公式计算预埋锚固受剪承载力标准值:

$$Q_{\mathbf{k}} = \overline{Q} \left[1 - t_{\alpha} (n - 1) \frac{S_{\mathbf{V}}}{\overline{Q}} \right]$$
 (5. 8. 7-3)

$$S_{\rm V} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (Q_i - \overline{Q})^2}$$
 (5. 8. 7-4)

式中: Qk ——锚固受剪承载力标准值 (kN);

Q ——该批试件锚固受剪承载力平均值(kN);

 S_{V} — 该批试件锚固受剪承载力样本方差;

Q. ——单个试件的锚固受剪承载力(kN)。

5.8.8 对于 GRC 带肋板或缺乏锚固承载力实验数据的 GRC 平板,锚固受拉承载力标准值和锚固受剪承载力标准值宜按现行行业标准《混凝土结构后锚固技术规程》 JGJ 145 的相关公式计算确定。

6 GRC 平板结构设计

6.1 GRC 平板

6.1.1 GRC 平板采用四点支承时,在重力荷载或风荷载或地震作用下产生的截面应力标准值应按下式计算:

$$\sigma_{k} = \frac{6mq_{k}l_{y}^{2}}{h^{2}} \tag{6.1.1}$$

式中: σ_k ——GRC 平板在重力荷载或风荷载或地震作用下产生的截面应力标准值 (N/mm^2) ,即 σ_k 分别代表 σ_{Gk} 或 σ_{wk} 或 σ_{Ek} ;

qk ——重力荷载或风荷载或地震作用标准值(N/mm²);

ly ——GRC 平板支承点间长边边长 (mm);

h ——GRC 平板厚度 (mm);

m — 四点支承 GRC 平板弯矩系数,根据 GRC 平板支承 点间的短边与长边边长之比 l_x/l_y 按表 6.1.1 确定。

$l_{\rm x}/l_{\rm y}$	0.00	0. 20	0.30	0.40	0.50	0.55	0.60	0.65
m	0. 125	0.126	0.127	0.129	0.130	0.132	0. 134	0.136
$l_{\rm x}/l_{\rm y}$	0.70	0.75	0.80	0.85	0.90	0.95	1.00	_
m	0.138	0.140	0. 142	0. 145	0.148	0.151	0. 154	_

表 6.1.1 四点支承 GRC 板的弯矩系数 m

注: l_x为支承点之间的短边边长。

- **6.1.2** GRC 平板受温湿度作用产生的截面应力标准值宜按本标准第 5.3.7 条和第 5.3.8 条的要求确定。
- 6.1.3 GRC 平板应进行承载力验算和抗裂验算。
- 6.1.4 GRC 平板的挠度应按下列要求验算:
 - 1 GRC 平板的刚度 D 可按下式计算:

$$D = \frac{Eh^3}{12(1 - \nu^2)} \tag{6.1.4-1}$$

- 2 GRC 平板的挠度应按下列规定计算:
 - 1) 对于竖直外墙或当自重对结构有利时的倾斜外墙,其 挠度值应按下式计算:

$$u = \frac{\mu \omega_k l_y^4}{D} \tag{6.1.4-2}$$

2) 对于当自重对结构不利时的倾斜外墙,其挠度值应按下式计算:

$$u = \frac{\mu(q_{\rm Gk} + w_{\rm k})l_{\rm y}^4}{D}$$
 (6.1.4-3)

式中: D ----GRC 平板刚度 (Nmm);

ν ——GRC 材料泊松比, 按本标准表 5.2.9 采用;

 q_{Gk} ——GRC 平板重力荷载标准值沿垂直于板面方向的分量 (N/mm^2) ;

μ——挠度系数,根据 GRC 平板支承点间短边与长边边 长之比 *l*₂/*l*₂按表 6. 1. 4 采用:

ω_k ——风荷载标准值 (N/mm²);

l, ——GRC 平板支承点间长边边长 (mm);

E ——GRC 材料弹性模量 (N/mm²);

h ——GRC 平板厚度 (mm);

u ──GRC 平板挠度 (mm)。

表 6.1.4 四点支承 GRC 板的挠度系数 µ

$l_{\rm x}/l_{\rm y}$	0.00	0. 20	0.30	0.40	0.50	0.55	0.60	0.65
μ	0.01302	0.01317	0.01335	0.01367	0.01417	0.01451	0.01496	0.01555
$l_{\rm x}/l_{\rm y}$	0.70	0.75	0.80	0.85	0.90	0.95	1.00	_
μ	0.01630	0.01725	0.01842	0.01984	0. 02157	0. 02363	0.02603	_

注: lx为支承点之间的短边边长。

3 四点支承 GRC 平板的挠度限值 μim 宜按其支承点间长边

边长的 l/240 确定。

6.1.5 当进行锚固受拉承载力设计时,GRC 锥体破坏受拉承载力标准值宜按本标准第5.8.7条的规定计算,在缺乏锚固承载力实验数据时亦可按本标准第5.8.8条的规定计算。计算所得的锚固受拉承载力标准值应符合本标准第5.8.1条的规定;对于后锚固抗震设计,应符合本标准第5.8.6条的规定。

6.2 横 梁

- 6.2.1 横梁截面主要受力部位的厚度, 应符合下列规定:
- 1 截面自由挑出部位(图 6.2.1a)和双侧加劲部位(图 6.2.1b)的宽厚比 b_0/t 应符合表 6.2.1 的要求。

截面部位		铝型	钢型材			
	6063-T5 6061-T4	6063A-T5	6063-T6 6063 A -T6	6061-T6	Q 235	Q 345
自由挑出	17	15	13	12	15	12
双侧加劲	50	45	40	35	40	33

表 6.2.1 横梁截面宽厚比 b₀/t 限值

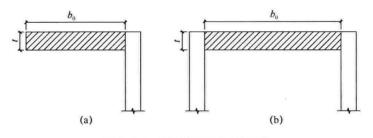


图 6.2.1 横梁的截面部位示意

2 当横梁跨度不大于 1.2m 时,铝合金型材截面主要受力部位的厚度不应小于 2.0mm;当横梁跨度大于 1.2m 时,其截面主要受力部位的厚度不应小于 2.5mm。型材孔壁与螺钉之间直接采用螺纹受力连接时,其局部截面厚度不应小于螺钉的公称

直径。

- 3 钢型材截面主要受力部位的厚度不应小于 2.5mm。
- 6.2.2 横梁可采用铝合金型材或钢型材,铝合金型材的表面处理应符合现行国家标准《铝合金建筑型材》GB/T 5237 规定的要求。钢型材宜采用高耐候钢,碳素钢型材应热浸锌或采取其他有效防腐措施,焊缝应涂防锈涂料;处于严重腐蚀条件下的钢型材,应预留腐蚀厚度。
- **6.2.3** 应根据板材在横梁上的支承状况决定横梁的荷载,并应计算横梁承受的弯矩和剪力。当采用大跨度开口截面横梁时,宜计算约束扭转产生的双力矩。
- 6.2.4 横梁截面受弯承载力应符合下式要求:

$$\frac{M_{\rm x}}{\gamma W_{\rm nx}} + \frac{M_{\rm y}}{\gamma W_{\rm ny}} \leqslant f \tag{6.2.4}$$

式中: M_x ——横梁绕截面 x 轴(平行于幕墙平面方向)的弯矩设计值(Nmm);

 M_y ——横梁绕截面 y 轴(垂直于幕墙平面方向)的弯矩设计值 (Nmm);

 W_{nx} — 横梁截面绕截面 x 轴(幕墙平面内方向)的净截面抵抗矩 (mm^3) ;

 W_{ny} — 横梁截面绕截面 y 轴(垂直于幕墙平面方向)的 净截面抵抗矩(mm^3);

γ——截面塑性发展系数,可取 1.05;

f──型材抗弯强度设计值(N/mm²)。

6.2.5 横梁截面受剪承载力应符合下式要求:

$$\frac{V_{y}S_{x}}{I_{x}t_{x}} \leqslant f_{v} \tag{6.2.5-1}$$

$$\frac{V_{\mathbf{x}}S_{\mathbf{y}}}{I_{\mathbf{y}}t_{\mathbf{y}}} \leqslant f_{\mathbf{y}} \tag{6.2.5-2}$$

式中: V_x ——横梁水平方向 (x 轴) 的剪力设计值 (N);

 V_y — 横梁竖直方向 (y 轴) 的剪力设计值 (N);

- S_x 横梁截面绕 x 轴的毛截面面积矩 (mm^3) ;
- S_v 横梁截面绕 y 轴的毛截面面积矩 (mm^3) ;
- I_x 横梁截面绕 x 轴的毛截面惯性矩 (mm^4) ;
- I_v 横梁截面绕 y 轴的毛截面惯性矩 (mm^4) ;
- t_x 横梁截面垂直于 x 轴腹板的截面总宽度 (mm);
- t_v 横梁截面垂直于 y 轴腹板的截面总宽度 (mm);
- f_v 型材抗剪强度设计值 (N/mm^2) 。
- **6.2.6** GRC 构件在横梁上偏置使横梁产生较大的扭矩时,应进行横梁抗扭承载力计算。
- 6.2.7 沿垂直于板面方向,横梁在风荷载和重力荷载按本标准第5.4.7条的规定计算的组合值作用下产生的挠度值 u_x 以及沿平行于板面方向,横梁在重力荷载标准值作用下产生的挠度值 u_y 均应符合下列规定:
 - 1 对铝合金型材, 挠度值应符合下列公式要求:

$$u_{\rm x} \leqslant l/180$$
 (6. 2. 7-1)

$$u_{\rm v} \leqslant l/180$$
 (6. 2. 7-2)

2 对钢型材, 挠度值应符合下列公式要求:

$$u_{\rm x} \leqslant l/250$$
 (6. 2. 7-3)

$$u_{y} \leqslant l/250$$
 (6. 2. 7-4)

式中: l——横梁的跨度 (mm), 悬臂构件取挑出长度的 2 倍。

6.3 立 柱

- 6.3.1 立柱截面主要受力部位的厚度,应符合下列规定:
- 1 铝型材截面开口部位的厚度不应小于 3.0mm,闭口部的厚度不应小于 2.5mm;型材孔壁与螺钉之间直接采用螺纹受力连接时,其局部厚度尚不应小于螺钉的公称直径;
 - 2 钢型材截面主要受力部位的厚度不应小于 3.0mm;
- **3** 对偏心受压立柱,其截面宽厚比应符合本标准第 6.2.1 条的相应规定。
- 6.3.2 立柱可采用铝合金型材或钢型材。铝合金型材的表面处

理应符合现行国家标准《铝合金建筑型材》GB/T 5237 的规定; 钢型材宜采用高耐候钢,碳素钢型材应采用热浸锌或采取其他有 效防腐措施。处于腐蚀严重环境下的钢型材,应预留腐蚀厚度。

- **6.3.3** 上柱与下立柱之间应留有不小于 15mm 的缝隙,闭口型材可采用长度不小于 250mm 的芯柱连接,芯柱与立柱应紧密配合。芯柱与上柱或下柱之间采用机械连接方法加以固定。开口型材上柱与下柱之间可采用等强型材机械连接。
- **6.3.4** 当多层或高层建筑中跨层通长布置立柱时,立柱与主体结构的连接支承点每层不宜少于一个;在混凝土实体墙面上,连接支承点宜加密。
- 6.3.5 在楼层内单独布置立柱时,其上下端均宜与主体结构铰接,宜采用上端悬挂方式;当柱支承点可能产生较大位移时,应采用与位移相适应的支承装置。
- **6.3.6** 应根据立柱的实际支承条件,分别按单跨梁、双跨梁或 多跨铰接梁计算由风荷载或地震作用产生的弯矩,并应按其支承 条件计算轴向力。
- 6.3.7 承受轴力和弯矩作用的立柱,其承载力应符合下式要求:

$$\frac{N}{A_{\rm n}} + \frac{M}{\gamma W_{\rm n}} \leqslant f \tag{6.3.7}$$

式中: N — 立柱的轴力设计值 (N);

M——立柱的弯矩设计值(Nmm);

 A_n — 立柱的净截面面积 (mm^2) ;

W_n ——立柱在弯矩作用方向的净截面抵抗矩 (mm³);

γ — 截面塑性发展系数,取 1.05;

f — 型材的抗弯强度设计值 f_a 或 f_s (N/mm²)。

6.3.8 承受轴压力和弯矩作用的立柱,其在弯矩作用方向的稳定性应符合下列公式要求:

$$\frac{N}{\varphi A} + \frac{M}{\gamma W (1 - 0.8N/N_{\rm E})} \le f$$
 (6. 3. 8-1)

$$N_{\rm E} = \frac{\pi^2 EA}{1. \ 1\lambda^2} \tag{6.3.8-2}$$

式中: N --- 立柱的轴压力设计值(N);

N_E——临界轴压力(N);

M——立柱的最大弯矩设计值 (Nmm);

φ——弯矩作用平面内轴心受压的稳定系数,按表 6.3.8 采用:

A——立柱的毛截面面积 (mm²);

W——在弯矩作用方向上较大受压边的毛截面抵抗矩 (mm³);

λ 一长细比;

E——钢材的弹性模量(N/mm²);

γ——截面塑性发展系数,取1.05;

f—型材的抗弯强度设计值 (N/mm^2) 。

14 200.1	钢型	型材		铝型	材	
长细比 - λ	Q 235	Q345	6063-T5 6061-T4	6063A-T5	6063-T6 6063A-T6	6061-T6
20	0.97	0.96	0.94	0.93	0.96	0. 95
40	0.90	0.88	0.85	0.80	0.86	0.82
60	0.81	0.73	0.72	0.65	0.69	0.58
80	0.69	0.58	0.57	0.48	0.48	0.38
90	0.62	0.50	0.50	0.41	0.39	0.31
100	0.56	0.43	0.43	0.35	0.33	0. 25
110	0.49	0.37	0.38	0.30	0. 28	0.21
120	0.44	0.32	0.33	0. 26	0. 24	0.18
130	0.39	0. 28	0.29	0.22	0.20	0.16
140	0.35	0. 25	0.26	0.20	0.18	0.14
150	0.31	0.21	0. 23	0.17	0.16	0.12

表 6.3.8 轴心受压柱的稳定系数 φ

- **6.3.9** 承受轴压力和弯矩作用的立柱,其长细比 λ 不宜大于 150。
- 6.3.10 在风荷载标准值作用下,立柱的挠度限值 uim 宜按下列

规定采用:

1 对铝合金型材, 挠度值应符合下式要求:

$$u_{\rm lim} = l/180$$
 (6. 3. 10-1)

2 对钢型材, 挠度值应符合下式要求:

$$u_{\rm lim} = l/250 \tag{6.3.10-2}$$

式中: l——跨度 (mm), 悬臂构件取挑出长度的 2 倍。

- **6.3.11** 横梁可通过角码、螺钉或螺栓与立柱连接。角码应能承受横梁的剪力,其厚度不应小于 3mm;角码与立柱之间的连接螺钉或螺栓应满足受剪和受扭承载力要求。
- **6.3.12** 立柱与主体结构之间每个受力连接部位的连接螺栓不应小于2个,目连接螺栓直径不宜小于10mm。

7 GRC 带肋板结构设计

7.1 面 板

- 7.1.1 对于由竖向和横向加强肋所围成的板区格,当面板的短边边长 l_x 与长边边长 l_y 之比小于 0.5 时,其面板应力按单向板计算,当面板短边边长与长边边长之比大于或等于 0.5 时,其面板应力按双向板计算。
- 7.1.2 当按单向板设计时,面板在重力荷载或风荷载或地震作用下产生的截面应力标准值应分别按下列公式计算:
 - 1 两端简支或一端简支一端固定:

$$\sigma_{\rm k} = 0.75 \, \frac{q_{\rm k} l_{\rm m}^2}{h^2} \tag{7.1.2-1}$$

2 两端固定:

$$\sigma_{\rm k} = 0.5 \, \frac{q_{\rm k} l_{\rm m}^2}{h^2} \tag{7.1.2-2}$$

式中: σ_k 一面板在重力荷载或风荷载或地震作用下产生的截面 应力标准值 (N/mm^2) , 即 σ_k 分别代表 σ_{Gk} 或 σ_{wk} 或 σ_{Ek} ;

 q_k ——重力荷载或风荷载或地震作用标准值 (N/mm^2) , 即 q_k 分别代表 q_{Ck} 或 w_k 或 q_{Ek} ;

l_m──区格内面板短边净跨 (mm);

h---面板板厚 (mm)。

7.1.3 按双向板设计时,面板在重力荷载或风荷载或地震作用下产生的截面应力标准值应按下式计算:

$$\sigma_{\mathbf{k}} = \frac{6mq_{\mathbf{k}}l_{\mathbf{x}}^2}{h^2} \tag{7.1.3}$$

式中: lx——板区格面板短边边长 (mm);

- m——沿短边方向弯矩系数,由面板长宽比 l_x/l_y 按本标准 附录 D 确定。
- **7.1.4** 面板受温湿度作用产生的截面应力标准值宜按本标准第 5.3.7 条和第 5.3.8 条的要求确定。

7.2 加强肋

7.2.1 作用于 GRC 面板的荷载应按三角形或梯形分布传递到加强肋上 (图 7.2.1a 和图 7.2.1b),作用于加强肋的计算荷载应按等弯矩原则转化为等效均布荷载。

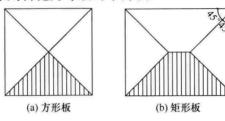


图 7.2.1 板面荷载向肋传递示意

7.2.2 各种加强肋计算截面的翼缘计算宽度 $b_{\rm F}$ (图 7.2.2) 应按下列规定确定:

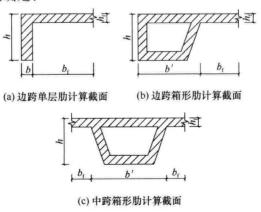


图 7.2.2 各种类型加强肋计算截面

- 1 当翼缘所在区格内的净跨尺寸小于或等于 $48h_{\rm f}$ 时, $b_{\rm f}$ 应取 1/2 净跨尺寸;
 - 2 当翼缘所在区格内的净跨尺寸大于 48hf时, bf应取 24hf。
- **7.2.3** 加强肋在重力荷载或风荷载或地震作用下产生的截面应力标准值应按下式计算:

$$\sigma_{\mathbf{k}} = \frac{M_{\mathbf{k}}}{W_{\min}} \tag{7.2.3}$$

- 式中: σ_k 加强肋在重力荷载或风荷载或地震作用下产生的截面应力标准值 (N/mm^2) ,即 σ_k 分别代表 σ_{Gk} 或 σ_{wk} 或 σ_{Ek} ;
 - M_k —加强肋按重力荷载或风荷载或地震作用计算的弯矩标准值(Nmm),即 M_k 分别代表 M_{Gk} 或 M_{wk} 或 M_{Ek} ;
 - W_{min}——加强肋截面受拉区边缘弹性抵抗矩(mm³),取较小值。
- **7.2.4** 加强肋受温湿度作用产生的截面应力标准值宜按本标准 第 5.3.7 条和第 5.3.8 条的要求确定。

7.3 极限状态设计

- 7.3.1 GRC 面板和加强肋应分别进行承载力验算和抗裂验算。
- **7.3.2** GRC 面板和加强肋应分别进行挠度验算,面板和加强肋的挠度值之和不应大于 l/300。
- 7.3.3 当进行 GRC 构件锚固受拉和受剪承载力设计时, GRC 锥体破坏受拉、劈裂破坏受拉承载力标准值或 GRC 边缘楔形体破坏受剪、剪撬破坏受剪承载力标准值应符合下列规定:
- 1 GRC 锥体破坏受拉、劈裂破坏受拉承载力标准值或 GRC 边缘楔形体破坏受剪、剪撬破坏受剪承载力标准值应按本 标准第 5. 8. 8 条的规定进行计算;
- 2 计算所得的 GRC 锥体破坏受拉、劈裂破坏受拉承载力标准值应符合本标准第 5.8.1 条的规定; 计算所得的 GRC 边缘

楔形体破坏受剪、剪撬破坏受剪承载力标准值应符合本标准第5.8.2条的规定;对于后锚固抗震设计,GRC 锥体破坏受拉、劈裂破坏受拉承载力标准值和 GRC 边缘楔形体破坏受剪、剪撬破坏受剪承载力标准值应符合本标准第5.8.6条的规定。

7.3.4 对于 GRC 锚固拉剪复合受力承载力的设计,其锚固拉剪复合受力承载力标准值应符合本标准第 5.8.4 条的规定;对于后锚固抗震设计,应符合本标准第 5.8.6 条的规定。

8 GRC 背附钢架板结构设计

8.1 GRC 面 板

8.1.1 GRC 面板采用纵横相互平行排列的柔性锚杆的支承形式可简化为点支承结构(图 8.1.1)。

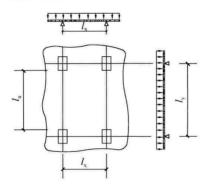


图 8.1.1 任一板区格内的计算简图

8.1.2 GRC 面板在重力荷载或风荷载或地震作用下,板区格截面产生的最大应力标准值应按下式计算:

$$\sigma_{\rm k} = 0.7312 \, \frac{q_{\rm k} l_{\rm n}^2}{h^2} \tag{8.1.2}$$

式中: σ_k 一面板在重力荷载或风荷载或地震作用下产生的截面 应力标准值 (N/mm^2) , 即 σ_k 分别代表 σ_{Gk} 或 σ_{wk} 或 σ_{Fk} ;

 q_k ——重力荷载或风荷载或地震作用标准值(N/mm²),即 q_k 分别代表 q_{Gk} 或 w_k 或 q_{Ek} ;

l。——板区格长边净跨 (mm);

h——板区格面板厚度 (mm)。

8.1.3 GRC 面板受温湿度作用产生的截面应力标准值宜按其受

到柔性锚杆的实际约束工况或按本标准第 5.3.7 条和第 5.3.8 条的要求确定。

- 8.1.4 GRC 面板应分别进行承载力验算和抗裂验算。
- **8.1.5** GRC 面板与 L 形锚杆采用预埋锚固, 其锚固承载力应符合下列规定:
- 1 GRC 面板与 L 形锚杆的锚固承载力应采用试验方法确定,其中,柔性锚杆的锚固受拉承载力标准值和重力锚杆的锚固受剪承载力标准值应按本标准第 5.8.7 条的规定计算;
- 2 所计算的锚固受拉承载力应符合本标准第 5.8.1 条的规定。其中,GRC 构件的锚固拉力设计值应依据 GRC 构件传递到锚固处的各种荷载按基本组合计算;
- **3** 所计算的锚固受剪承载力标准值应符合本标准第 5.8.2 条的规定。其中,GRC 构件的锚固剪力设计值应依据 GRC 构件传递到锚固处的各种剪力按基本组合计算。

8.2 背附钢架设计

- 8.2.1 龙骨截面主要受力部位的厚度应符合下列规定:
- 1 非轴拉受力状态的龙骨,其截面的宽厚比应符合本标准 第6.2.1条的规定;
 - 2 热轧钢型材的有效厚度不应小于 3mm。
- 8.2.2 龙骨宜采用钢型材。钢型材宜采用耐候钢;碳素钢型材应热浸镀锌或采取其他有效防腐措施。处于潮湿或腐蚀条件下的钢型材,可按计算厚度增加 1mm 为设计厚度。
- 8.2.3 柔性锚杆和重力锚杆与龙骨的连接宜采用焊接或铰接, 其连接承载力应能保证 GRC 面板所受到的各种荷载可靠地传递 到相应龙骨上。
- 8.2.4 作用于龙骨上的荷载应根据 GRC 面板在龙骨上的支承 状况以及龙骨之间的传力途径计算确定。
- 8.2.5 承受轴力和弯矩作用的龙骨,其承载力应符合本标准第6.3.7条的规定,当轴力为压力时,其在弯矩作用方向的稳定性

应符合本标准第6.3.8条的规定。

- 8.2.6 不承受轴力的龙骨,其截面受弯承载力和受剪承载力应分别符合本标准第 6.2.4 条和第 6.2.5 条的规定; GRC 面板在龙骨上偏置使龙骨产生较大扭矩时,尚应进行龙骨受扭承载力计算。
- **8.2.7** 龙骨之间的连接应能承受 GRC 面板的各种荷载和作用 及绕龙骨形心轴的扭转力。
- 8.2.8 背附钢架应进行挠度验算,其挠度限值为 l/240。

9 制作加工

9.1 一般规定

- **9.1.1** GRC 构件生产单位应具备相应的生产工艺设施和必要的 试验检测手段,并应建立完善的质量管理体系。
- **9.1.2** GRC 构件制作前,应根据设计要求、工艺要求和质量标准进行技术交底,并应制定相应的生产方案。

9.2 GRC 构件制作

- **9.2.1** GRC 构件制作前应进行产品图的设计,产品图应与安装图相一致。
- **9.2.2** GRC 构件产品图应标识构件尺寸、预埋件及背附钢架对应位置、构件剖面、细部详图、材料名称及规格等信息。
- 9.2.3 制作 GRC 构件的模具应有足够刚度和尺寸精度且不吸水。投入生产前应对模具进行验收。应选用对 GRC 构件表面无污染的隔离剂并均匀涂覆。
- **9.2.4** 浇筑成型宜选用自流平或自密实浆料或采取内外辅助振动工艺进行密实。
- **9.2.5** 带有背附钢架的 GRC 构件在完成喷射或浇筑作业后应立即装配,应采取必要的承托和定位措施,装配应按产品设计图纸进行。
- 9.2.6 GRC 浆料初凝后应静置养护,不含丙烯酸乳液的 GRC 构件应采取保湿措施,养护温度不宜低于 10℃。
- 9.2.7 GRC 构件应达到设计强度的 50%以上方可脱模,脱模时不应采用局部应力过于集中的方法,当构件特殊或尺寸太大无法采用人工脱模时,应在构件中埋入专用脱模套管或套环,借助起吊设备以及脱模辅助装置操作。

9.2.8 脱模后自然养护时间,硅酸盐水泥基 GRC 构件不应低于 7d,硫铝酸盐水泥基 GRC 构件不应低于 3d。低于标准温度时养护时间应适当延长。

9.3 金属构件加工

- 9.3.1 钢构件的加工应符合现行国家标准《钢结构工程施工质量验收规范》GB 50205 的有关规定;钢构件焊接、螺栓连接应符合现行国家标准《钢结构设计标准》GB 50017、《冷弯薄壁型钢结构技术规范》GB 50018 及《钢结构焊接规范》GB 50661 的有关规定。
- **9.3.2** 铝合金型材构件加工应符合现行国家标准《铝合金结构设计规范》GB 50429 的有关规定。
- **9.3.3** GRC 构件生产企业应配置金属构件加工需要的场地和设施,加工好的金属构件不应产生变形。
- 9.3.4 金属构件加工制作应符合设计要求,与 GRC 构件装配前应 检验尺寸偏差、安置点位置、焊接质量、防锈涂层或镀锌质量等。

9.4 检验

- **9.4.1** GRC 构件不应有严重缺陷,对于一般缺陷应在工厂内修复后方能出厂。
- 9.4.2 GRC 构件的尺寸允许偏差及检验方法应符合现行行业标准《玻璃纤维增强水泥外墙板》JC/T 1057 或《玻璃纤维增强水泥 (GRC) 装饰制品》JC/T 940 及表 9.4.2 规定。

项目	允许偏差 (mm)	检验方法
钢架位置偏差	±5	尺量检查

表 9.4.2 GRC 构件尺寸允许偏差及检验方法

9.4.3 金属构件的尺寸允许偏差及检验方法应符合表 9.4.3 的规定。

 ± 5

尺量检查

预埋件、孔、槽位置偏差

项目 允许偏差 (mm) 检验方法 边长 尺量检查 +10对角线差 ≤10 尺量检查 连接件、支承件加工尺寸 ± 5 尺量检查 孔、槽位置 +10尺量检查 ≤5 拉线尺量检查 納曲

表 9.4.3 金属构件尺寸允许偏差及检验方法

9.4.4 GRC 构件性能检验应符合下列规定:

- 1 GRC 构件每班生产的同时应按现行行业标准《玻璃纤维增强水泥外墙板》JC/T 1057 或《玻璃纤维增强水泥(GRC)装饰制品》JC/T 940 要求制作试验板,应按现行国家标准《玻璃纤维增强水泥性能试验方法》GB/T 15231 的规定进行相关性能测试。测试结果应符合设计要求;
- **2** 生产企业应建立满足日常检测要求的实验室,生产期间每天应对测试样板进行测试,检测的结果在工程竣工后一年内应进行保存。
- 9.4.5 GRC 构件的色差应符合建筑外观效果要求。
- **9.4.6** GRC 构件验收合格后,应在产品的显著位置设置标识,标识的内容应包括产品编号、制作日期、合格状态、生产企业名称等信息。

9.5 搬运和堆放

- 9.5.1 GRC 构件搬运应符合下列规定:
- 1 GRC 构件的搬运应次数最少化,应根据产品的形状、尺寸和重心,采取合理的搬运措施;
- **2** 搬运期间,构件应避免受到因振动、碰撞或挤压导致的局部应力集中;
- **3** 搬运过程中应采取人身安全和对产品的必要保护措施, 对于特殊产品应制定专门的质量安全保证措施。

9.5.2 GRC 构件堆放应符合下列规定:

- 1 应根据 GRC 构件造型特点按位置顺序进行堆放,应避 免构件产生变形、破损或开裂。支承性、填充性以及防护性材料 不应对构件产生损坏、污染:
- **2** 应设置专门的堆放场地,场地应平整、坚实,并应留有足够的中转空间和运输通道;
- 3 堆放在成品区的 GRC 构件应采取必要的包装保护措施, 应避免淋雨或与土、油、侵蚀性气体、焦油或烟雾直接接触;
- **4** 对使用衬垫或支架等支承构件,支承点应为安装预埋件位置。当两个构件需叠放时,接触位置应放置缓冲材料;
 - 5 雨期和寒冷天气应采取防雨淋、防雪措施。

10 安装施工

10.1 一般规定

- **10.1.1** 安装 GRC 构件应在主体工程验收后进行,现场满足安装条件后方可施工。
- **10.1.2** 进场的 GRC 构件的品种、规格、性能应符合设计要求。安装前应对现场施工人员进行技术交底。
- 10.1.3 安装施工单位应编制专项施工方案,并应包括下列内容,
 - 1 工程概况:
 - 2 编制依据:
 - 3 施工进度计划;
 - 4 材料与设备计划:
 - 5 安装方法;
 - 6 安装顺序;
 - 7 检验方法;
 - 8 安全与文明施工措施。
- 10.1.4 GRC 构件施工作业环境应符合下列规定:
 - 1 温度应在0℃以上;
 - 2 雨雪天气和6级以上大风天气不得作业;
 - 3 安装作业上下方不应同时有其他作业。
- **10.1.5** GRC 构件的安装应与屋面、墙体保温施工和门窗安装等工种协调配合。
- **10.1.6** GRC 构件安装施工安全措施应符合国家现行有关标准的规定。

10.2 运输和现场堆放

10.2.1 GRC 构件装卸应符合下列规定:

- 1 GRC 构件的装卸顺序应与安装顺序相符。
- **2** 装卸 GRC 构件时应有保护措施,GRC 构件与包装紧固 材料之间应有保护材料。
- **3** 装卸设施应根据产品造型或包装特点确定,除较小产品可用人工装卸外,应采用专用托盘和支架并应采用叉车或吊机进行装卸。当采用吊机进行装卸时,宜将吊点设置在包装支架上。
- **4** 叠放时应确定竖向力的传递方向,必要时应使用专用支架。当长条形板竖向放置时,两端应有侧向水平支撑。
 - 5 装卸过程应轻缓平稳。
- 10.2.2 GRC 构件运输应符合下列规定:
- 1 运输方案应根据项目特点制定,对于超宽、超高或造型 特殊的构件应采取安全措施;
- **2** 在运输车辆上应放置适当的垫块,同时应确定构件码放位置,在运输途中包装箱、托盘、支架应平稳;
- 3 运输车辆应满足产品装载和造型尺寸限制的要求,应采取防止产品移动、倾倒、变形的固定措施,应进行合理的固定和捆扎;
- **4** 运输时应采取防止构件损坏的措施,对产品边角部位及 捆扎固定的接触部位应采取必要的保护措施。
- **10.2.3** 施工现场 GRC 构件堆放措施应符合本标准第 9.5.2 条规定,并应符合下列规定:
- 1 现场应规划堆放区域,不宜与其他建筑材料或设备混放。 构件应按安装顺序编号依次堆放。
- **2** 现场应采取防尘、防污、防水保护措施,施工车辆、机械或其他作业应避免对构件造成意外破坏。

10.3 施工准备

- **10.3.1** 施工现场 GRC 构件、安装辅件及主体结构上的锚固件应进行检查验收。
- 10.3.2 GRC 构件安装前应对主体结构进行现场测量和对安装

部位结构和墙体进行检查,对影响安装的结构误差及其他问题应 向相关部门报告并及时处理。

10.4 安装施工

- **10.4.1** GRC 构件应通过支承结构与主体结构连接。GRC 构件与支承结构应采用插槽连接或螺栓连接,严禁现场焊接。
- 10.4.2 支承结构与主体结构的连接方式应符合下列规定:
 - 1 混凝土结构应采用预埋锚固或后锚固;
- **2** 钢结构宜采用螺栓连接,在焊缝防腐措施能保证的情况下也可采用焊接;
- **3** 除小型构件或墙体经过事先设计和处理的情况下,不宜将 GRC 构件直接安装在砌体结构上。
- 10.4.3 支承结构与主体结构焊接部位的防腐应符合设计要求。
- 10.4.4 竖向连续分布构件宜自下而上安装,竖向不连续分布的构件可同时在不同层次作业。横向连续构件的安装顺序应根据误差进行分配,宜从边角开始安装。环窗构件的安装顺序宜为窗台一窗边一窗顶。
- **10.4.5** 柱式 GRC 构件可一点吊装,横向尺度大的 GRC 构件 应采用两点或多点吊装。吊点设置应平衡。
- **10.4.6** 有背附钢架的 GRC 构件,吊点数量和位置应根据背附钢架刚度和构件的形状确定。吊装点应布置在钢架上,吊装荷载不应作用到构件或锚杆上。
- **10.4.7** 无背附钢架的 GRC 构件吊装点不宜采用安装预埋件替代,应设置专门吊点,或内置吊装螺母或埋入吊装钢索等。
- **10.4.8** GRC 构件就位后经测量确定三维方向的位置和角度都应在允许误差范围内,方可固定。
- **10.4.9** 每个 GRC 构件均应独立与主体结构或支承结构连接,不得承受上部或邻近 GRC 构件的荷载。
- **10.4.10** 檐线、腰线、窗台线等横向 GRC 构件,应有不小于 3%的排水坡度。

- 10. 4. 11 支承结构与主体结构连接应在围护墙体和屋面的保温层和防水层施工前完成。如遇特殊情况需要倒序施工,对破坏的保温层和防水层应填充封堵。安装 GRC 构件时,严禁踩踏、碰撞和破坏保温层和防水层。
- **10.4.12** GRC 构件接缝允许偏差内,可将部分安装偏差在构件接缝中调整。
- **10.4.13** 构件与构件之间、构件与其他围护墙体之间的接缝宜采取嵌缝处理。
- **10.4.14** 对于 GRC 复合板外墙,宜采用双重止水构造,在密封胶嵌缝之前应粘结止水胶条。止水胶条宜为空心胶条,两侧应粘结到 GRC 构件上,其外径尺寸应大于缝宽。
- **10.4.15** GRC 构件接缝处理应先修整接缝、清除浮灰。嵌缝时构件应干燥,不宜在雨雪天气作业。
- 10.4.16 嵌缝应填充饱满、深度一致。
- **10.4.17** GRC 构件与墙体接缝及其与其他围护材料的接缝处理措施,应符合设计要求。
- **10.4.18** GRC 构件安装过程中出现的局部缺棱掉角、表面污染问题,应进行修补或去污处理。
- **10.4.19** 无涂料装饰要求的 GRC 外墙,应在接缝密封胶施工完成后进行防护处理。所用防护剂不宜改变 GRC 外墙外观,且不得影响密封胶的粘结性能或与密封胶发生反应。
- 10.4.20 GRC 构件与主体结构的连接节点应按隐蔽工程验收。

10.5 安装质量要求

- 10.5.1 GRC 构件与主体结构的净距应符合下列规定:
- 1 GRC 构件背面与预制混凝土结构净距不应小于 40mm, 与现浇混凝土结构净距不应小于 50mm;
 - 2 GRC 构件背面与钢结构净距不应小于 40mm;
 - 3 对于高层或不规则结构,净距不应小于50mm;
 - 4 柱套与柱子之间净距不应小于 75mm;

- **5** GRC 构件与主体结构的连接点在上下、左右、前后三个方向内的调节空间净距不应小于 25mm。
- 10.5.2 安装效果应符合下列规定:
- 1 安装后的 GRC 外立面应线条清晰、层次分明、表面平整、曲面过渡光滑,横向构件应保证平直度,竖向构件应保证垂直度,整体效果应达到建筑设计要求;
- **2** GRC 构件表面应洁净,表面颜色和质感应符合样板要求;
- **3** GRC 构件间接缝应平直、均匀,不得有歪斜、错台及边角损坏。
- 10.5.3 安装偏差应符合下列规定:
- 1 建筑平面内, GRC 构件与建筑轴线的距离偏差不应大于 12mm;
- 2 立面 3m 高度 GRC 构件立面垂直度偏差不应大于 5mm; 立面 15m 高度 GRC 构件立面垂直度偏差不应大于 10mm; 立面 30m 高度 GRC 构件立面垂直度偏差不应大于 20mm;
- **3** 单个 GRC 构件顶部标高与设计标高偏差不应大于 10mm, 相邻构件顶部标高偏差不应大于 5mm;
- 4 GRC 构件长度小于或等于 6m 时,接缝宽度与设计宽度偏差不应大于 5mm; GRC 构件长度大于 6m 时,接缝宽度与设计宽度偏差不应大于 10mm;
 - 5 相邻 GRC 构件面内错台偏差不应大于 5mm;
 - 6 与主体结构相连的连接件定位偏差不应大于 5mm。

11 验 收

11.1 一般规定

- 11.1.1 工程验收应包括技术资料复核、现场检查和抽样检验。
- 11.1.2 相同设计、材料、工艺和施工条件的 GRC 外墙应以 1000m²为一个检验批,不足 1000m²应划分为 1 个检验批,超过 10000m²的以 3000m²为一个检验批。每个检验批抽查不应少于 5 处,每处不应少于 10m²。

11.2 进场验收

- **11.2.1** 施工单位应提供符合设计要求的相关证明文件,包括经审批的设计图纸、生产厂家的型式检验报告。
- 11.2.2 进场验收应检查 GRC 构件产品合格证,钢构件、连接件材质证明及合格证,安装密封胶合格证等文件资料。
- 11.2.3 GRC 构件应进行性能复试,复试应由 GRC 供应商提供与施工项目配方及生产工艺一致的测试板,检测机构应按现行行业标准《玻璃纤维增强水泥外墙板》JC/T 1057 或《玻璃纤维增强水泥(GRC)装饰制品》JC/T 940 进行检测。复试应在 GRC 构件正式投产后进行,每项工程宜复试 1 次,特殊要求应在合同中明确。
- **11.2.4** 设计或合同有要求时应提供密封胶与 GRC 材料的相容性测试报告。
- **11.2.5** GRC 外墙工程涉及的各类材料进场应按设计要求及相关质量标准验收,并应进行验收记录。进场验收记录表可按本标准附录 E 填写。
- **11.2.6** 进场 GRC 构件应进行外观、包装、尺寸抽查,抽查比例不应小于 1% (件数或面积)。

11.3 中间验收

- **11.3.1** GRC 外墙工程应进行阶段性施工质量的中间验收,并应填写验收记录。中间验收记录表可按本标准附录 E 填写。
- 11.3.2 中间验收应符合下列规定:
- 1 GRC 构件的造型、尺寸、表面效果应符合设计或样板要求:
- **2** GRC 构件的预埋件、锚固件、连接件、安装孔、槽应符合设计要求;
- **3** GRC 构件与主体结构连接应符合设计要求,安装必须 牢固;
- **4** GRC 外墙工程的保温、防水、防污、防火、防雷的处理 应符合设计要求;
 - 5 GRC 外墙密封施工和接缝处理应符合设计要求;
 - 6 GRC 构件安装质量要求应符合本标准第 10.5 节的规定。

11.4 竣工验收

- 11.4.1 GRC 外墙工程竣工验收前应将其表面全面清洗干净。
- 11.4.2 GRC 外墙工程竣工验收时应提交下列资料:
- 1 通过审查并经建筑设计单位确认的有关 GRC 外墙设计图纸、结构计算书、设计变更文件等;
- **2** 进场验收及中间验收阶段相关联的合格证、检测报告、 验收记录;
- 3 设计单位提出检测要求的涉及 GRC 构件中预埋件、锚固件、连接件拉拔及剪切性能检测报告;
 - 4 隐蔽工程中间验收记录;
 - 5 设计单位提出检测要求的涉及外墙系统性能的检测报告;
 - 6 现场安装的施工记录;
 - 7 GRC 外墙工程竣工验收表;
 - 8 其他合同有要求的质量保证资料。

I 主控项目

11.4.3 GRC 外墙总体造型、表面效果应符合设计或样板要求。 检验数量:全数检验。

检验方法:观察。

11.4.4 GRC 外墙及主体结构的预埋件、锚固件、连接件应符合设计要求。

检验数量:按批检验。

检验方法:检查材料进场记录;检查隐蔽工程中间验收记录。

11.4.5 GRC 构件与主体结构连接应符合设计要求,安装必须牢固。

检验数量:按批检验。

检验方法:观察;检查隐蔽工程中间验收记录。

11.4.6 GRC 外墙工程的保温、防水、防污、防火、防雷的处理应符合设计要求。

检验数量:按批检验。

检验方法:观察;检查中间验收记录。

11.4.7 GRC 外墙密封施工和接缝处理应符合设计要求。

检验数量:按批检验。

检验方法:观察;淋水试验;检查施工记录和中间验收记录。

11.4.8 GRC 外墙安装偏差应符合本标准第 10.5.3 条的规定。 检验数量:按批检验。

检验方法:观察;测量;检查施工记录和中间验收记录。

Ⅱ一般项目

11.4.9 GRC 外墙嵌缝(含开放式外墙板的明缝及滴水线)应横平竖直,表面应光滑、平整、无污染。

检验数量:全数检验。

检验方法:观察。

11.4.10 GRC 外墙整体颜色应统一,局部色差和修补痕迹应在 6m 距离观察不明显。

检验数量:全数检验。

检验方法:观察。

11.4.11 面板表面应无凹坑、缺边掉角、开裂、破损、斑痕、污染等 3m 距离可见明显缺陷。

检验数量:全数检验。

检验方法:观察。

12 维修与保养

12.1 一般规定

- **12.1.1** GRC 外墙工程竣工验收时,施工单位应向业主提供GRC 使用维护说明书,说明书应包括下列内容:
 - 1 施工方的保修责任及后期服务项目;
 - 2 定期检查、维护、保养要求;
 - 3 使用注意事项。
- 12.1.2 GRC 外墙工程的保修期不应少于 2 年。
- **12.1.3** GRC 外墙表面检查、清洗、维护和保养应根据 GRC 使用维护说明书进行,高空作业应符合现行行业标准《建筑施工高处作业安全技术规程》JGJ 80 的有关规定。

12.2 检查与维修

- 12.2.1 GRC 外墙工程竣工验收后一年,应对 GRC 外墙进行一次检查,此后每 5 年检查一次,使用 10 年后应每 3 年全面检查一次,检查项目应符合下列规定:
- 1 当 GRC 构件出现变形、错位、松动时,应进一步检查 该构件对应的隐蔽构造;
- **2** GRC 外墙安装结构、连接件、连接螺栓、预埋件、锚固件、锚固块连接应可靠,应无锈蚀并不应危害结构安全等;
 - 3 GRC 外墙嵌缝应无脱胶、开裂和老化,应无渗漏情况;
 - 4 GRC 构件应无结构性裂纹;
 - 5 GRC 外墙表面应无污染情况及防水效果良好。
- **12.2.2** 对检查中发现的结构安全隐患应根据 GRC 使用维护说明书进行维修或更换。
- 12.2.3 对检查中发现的局部破损、螺栓松动、连接件锈蚀、密

封胶损坏等应及时维修。

12.2.4 在地震、台风、火灾等重大自然灾害发生后,应进行全面检查。

12.3 清洗和保养

- 12.3.1 GRC 板面应避免受到人为污染和破坏,板面应清洁。
- **12.3.2** 应在防护剂防护效果有效年限期满或实际防护效果已经不能满足使用要求时进行防护剂的再次施工。
- **12.3.3** GRC 外墙的清洗周期应根据地域及产品表面污染的实际情况确定,不应少于每年1次,宜采用中性清洗材料,不宜使用具有腐蚀性的清洗材料。
- **12.3.4** 建筑投入使用后应避免对产品的二次破坏。当需对 GRC 外墙进行钻孔、切割、调整产品与结构连接方式等处理时, 应制定施工方案。

附录 A 耐候钢强度设计值

A. 0.1 耐候钢强度设计值可按表 A. 0.1 确定。

表 A. 0.1 耐候钢强度设计值 (N/mm²)

钢号	厚度 t (mm)	屈服强度 σ _s	抗拉强度 f_s	抗剪强度	承压强度 f _{ce}
	t≤16	235	216	125	295
COSTNUL	16< <i>t</i> ≤40	225	207	120	295
Q235NH	40< <i>t</i> ≤60	215	198	115	295
	t>60	215	198	115	295
	<i>t</i> ≤16	295	271	157	344
CONTAIL	16< <i>t</i> ≤40	285	262	152	344
Q295NH	40< <i>t</i> ≤60	275	253	147	344
	60 <t≤100< td=""><td>255</td><td>235</td><td>136</td><td>344</td></t≤100<>	255	235	136	344
	<i>t</i> ≤16	355	327	189	402
OBEENIL	16< <i>t</i> ≤40	345	317	184	402
Q355NH	40< <i>t</i> ≤60	335	308	179	402
	60 <t≤100< td=""><td>325</td><td>299</td><td>173</td><td>402</td></t≤100<>	325	299	173	402
	t≤16	460	414	240	451
OACONILI	16< <i>t</i> ≤40	450	405	235	451
Q460NH	40< <i>t</i> ≤60	440	396	230	451
	60 <t≤100< td=""><td>430</td><td>387</td><td>224</td><td>451</td></t≤100<>	430	387	224	451
Q295GNH	<i>t</i> ≤6	295	271	157	320
(热轧)	t>6	295	271	157	320
Q295GNHL	<i>t</i> ≤6	295	271	157	353
(热轧)	t>6	295	271	157	353

续表 A. 0. 1

钢号	厚度 t (mm)	屈服强度 σ _s	抗拉强度 f_s	抗剪强度 f _v	承压强度
Q345GNH	<i>t</i> ≤6	345	317	184	361
(热轧)	<i>t</i> >6	345	317	184	361
Q345GNHL	<i>t</i> ≤6	345	317	184	394
(热轧)	<i>t</i> >6	345	317	184	394
Q390GNH	<i>t</i> ≤6	390	359	208	402
(热轧)	<i>t</i> >6	390	359	208	402
Q295GNH (冷轧)	<i>t</i> ≤2. 5	260	239	139	320
Q295GNHL (冷轧)	<i>t</i> ≤2. 5	260	239	139	320
Q345GNHL (冷轧)	<i>t</i> ≤2. 5	320	294	171	369

附录 B 钢结构连接强度设计值

B. 0.1 钢结构连接的强度设计值应符合下列规定:

1 钢结构连接的强度设计值应分别按表 B. 0. 1-1、B. 0. 1-2 确定。

螺栓的性能等级和 构件钢材的牌号		普通螺栓						承压型连接		
		C级螺栓		A级、B级螺栓			高强度螺栓			
		抗拉	抗剪	承压 fc	抗拉	抗剪	承压 fc	抗拉 f:	抗剪 fv	承压 f ^b c
	4.6级 4.8级	170	140	_	_	-	_	_	_	_
普通螺栓	5.6级	-	-	-	210	190	_	_	-	_
	8.8级	-	_	_	400	320	_	_	_	-
承压型连接	8.8级	_	_	_	-	_	-	400	250	
高强度螺栓	10.9级	-	-	_	_	_	-	500	310	
	Q235 钢	Y	-	305	_	-	405	-	-	470
构件	Q345 钢	-	-	385	-	-	510	-	-	590
	Q 390 钢	_	-	400	-	_	530	_	-	615

表 B. 0. 1-1 螺栓连接的强度设计值 (N/mm²)

- 注: 1 A 级螺栓用于公称直径 d 不大于 24mm、螺杆公称长度不大于 10d 且不大于 150mm 的螺栓:
 - 2 B级螺栓用于公称直径 d 大于 24mm、螺杆公称长度大于 10d 或大于 150mm 的螺栓;
 - 3 A、B级螺栓孔的精度和孔壁表面粗糙度,C级螺栓孔允许偏差和孔壁表面的表面粗糙度,均应符合现行国家标准《钢结构工程施工质量验收规范》GB 50205 的要求。

表 B. 0. 1-2 焊缝的强度设计值 (N/mm²)

	构件	‡钢材		对接焊缝	角焊缝		
焊接方法和 焊条型号	牌号	厚度或 直径 d	抗压 fe	抗拉和抗弯受拉 <i>f</i> ;"		抗剪 <i>f</i> ₩	抗拉、 抗压和
		(mm)	J c	一级、二级	三级	JV	抗剪 f
自动焊、半自		<i>d</i> ≤16	215	215	185	125	160
动焊和 E43 型焊	Q235 钢	16 <d≤40< td=""><td>205</td><td>205</td><td>175</td><td>120</td><td>160</td></d≤40<>	205	205	175	120	160
条的手工焊		40 <d≤60< td=""><td>200</td><td>200</td><td>170</td><td>115</td><td>160</td></d≤60<>	200	200	170	115	160
自动焊、半自		<i>d</i> ≤16	310	310	265	180	200
动焊和 E50 型焊	Q 345 钢	16< <i>d</i> ≤35	295	295	250	170	200
条的手工焊		35 <d≤50< td=""><td>265</td><td>265</td><td>225</td><td>155</td><td>200</td></d≤50<>	265	265	225	155	200
自动焊、半自		d≤16	350	350	300	205	220
动焊和 E55 型焊	Q 390 钢	16 <d≤35< td=""><td>335</td><td>335</td><td>285</td><td>190</td><td>220</td></d≤35<>	335	335	285	190	220
条的手工焊		35 <d≤50< td=""><td>315</td><td>315</td><td>270</td><td>180</td><td>220</td></d≤50<>	315	315	270	180	220
自动焊、半自		<i>d</i> ≤16	380	380	320	220	220
动焊和 E55 型焊	Q420 钢	16 <d≤35< td=""><td>360</td><td>360</td><td>305</td><td>210</td><td>220</td></d≤35<>	360	360	305	210	220
条的手工焊		35 <d≤50< td=""><td>340</td><td>340</td><td>290</td><td>195</td><td>220</td></d≤50<>	340	340	290	195	220

- 注: 1 表中的一级、二级、三级是指焊缝质量等级,应符合现行国家标准《钢结构工程施工质量验收规范》GB 50205 的规定;厚度小于8mm 钢材的对接焊缝,不应采用超声探伤确定焊缝质量等级;
 - 2 自动焊和半自动焊所采用的焊丝和焊剂,应保证其熔敷金属力学性能不低于现行国家标准《埋弧焊用碳钢焊丝和焊剂》GB/T 5293 和《埋弧焊用低合金钢焊丝和焊剂》GB/T 12470 的有关规定;
 - 3 表中厚度是指计算点的钢材厚度,对轴心受力构件是指截面中较厚板件的 厚度。
- 2 当单面连接的单角钢按轴心受力计算强度和连接时,强度设计值应乘以折减系数 0.85;当施工条件较差的高空安装焊接时,强度设计值应乘以折减系数 0.90。当以上两种情况同时存在时,强度设计值折减系数应连乘。

附录 C 预埋件设计

C. 0.1 由锚板和对称配置的直锚筋所组成的受力预埋件(图 C. 0.1),其锚筋的总截面面积 A. 应符合下列规定:

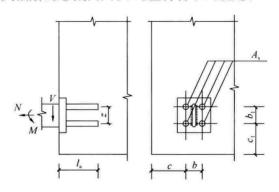


图 C. 0.1 锚板和直锚筋组成的预埋件示意

1 当有剪力、法向拉力和弯矩共同作用时,应分别按下列 公式计算,并应取二者的较大值:

$$A_{\rm s} \geqslant \frac{V}{\alpha_{\rm r}\alpha_{\rm v}f_{\rm v}} + \frac{N}{0.8\alpha_{\rm b}f_{\rm y}} + \frac{M}{1.3\alpha_{\rm r}\alpha_{\rm b}f_{\rm y}z}$$
 (C. 0. 1-1)

$$A_{\rm s} \geqslant \frac{N}{0.8\alpha_{\rm b}f_{\rm y}} + \frac{M}{0.4\alpha_{\rm r}\alpha_{\rm b}f_{\rm y}z}$$
 (C. 0. 1-2)

2 当有剪力、法向压力和弯矩共同作用时,应分别按下列 公式计算,并应取二者的较大值:

$$A_{s} \geqslant \frac{V - 0.3N}{\alpha_{r}\alpha_{v}f_{y}} + \frac{M - 0.4Nz}{1.3\alpha_{r}\alpha_{b}f_{y}z}$$
 (C. 0. 1-3)

$$A_{\rm s} \geqslant \frac{M - 0.4Nz}{0.4\alpha_{\rm s}\alpha_{\rm b}f_{\rm b}z}$$
 (C. 0. 1-4)

$$\alpha_{\rm v} = (4.0 - 0.08d) \sqrt{\frac{f_{\rm c}}{f_{\rm y}}}$$
 (C. 0. 1-5)

$$\alpha_{\rm b} = 0.6 + 0.25 \frac{t}{d}$$
 (C. 0.1-6)

式中: V---剪力设计值(N):

- N——法向拉力或法向压力设计值 (N) ,法向压力设计值 π 应大于 $0.5 f_{\rm e}A$,此处 A 为锚板的面积 (mm^2) ;
- M——弯矩设计值 (Nmm), 当 M 小于 0.4Nz 时, 取 M 等于 0.4Nz;
- α_r——锚筋层数影响系数,当锚筋等间距配置时,二层取 1.0,三层取 0.9,四层取 0.85;
- α_v ——锚筋受剪承载力系数, 当 α_v 大于 0.7 时, 取 α_v 等于 0.7:
- d---钢筋直径 (mm);
- t---锚板厚度 (mm);
- α_b——锚板弯曲变形折减系数,当采取防止锚板弯曲变形 的措施时,取 α_b 等于 1.0;
 - ∠──沿剪力作用方向最外层锚筋中心线之间的距离 (mm);
- f。——混凝土轴心抗压强度设计值(N/mm²),按现行国家标准《混凝土结构设计规范》GB 50010 的规定采用;
- f_y——钢筋抗拉强度设计值(N/mm²),按现行国家标准《混凝土结构设计规范》GB 50010 的规定确定,但不应大于 300N/mm²。
- **C. 0. 2** 预埋件的锚板宜采用 Q235 或 Q345 级钢。锚筋应采用 HRB400 级热轧钢筋,严禁采用冷加工钢筋。
- C. 0. 3 预埋件的受力直锚筋不宜少于 4 根,且不宜多于 4 层; 其直径不宜小于 8mm,且不宜大于 25mm。受剪预埋件的直锚

筋可采用2根。预埋件的锚筋应放置在构件的外排主筋的内侧。

- C. 0. 4 直锚筋与锚板应采用 T 形焊。当锚筋直径不大于 20mm 时,宜采用压力埋弧焊;当锚筋直径大于 20mm 时,宜采用穿孔塞焊。当采用手工焊时,焊缝高度不宜小于 6mm 及 0. 5d (HPB300 级钢筋)或 0. 6d (HRB400 级钢筋),d 为锚筋直径。
- C. 0.5 受拉直锚筋和弯折锚筋的锚固长度应符合下列规定:
- 1 当计算中充分利用锚筋的抗拉强度时,其锚固长度应按下式计算:

$$l_{a} = \alpha_{s} \frac{f_{y}}{f_{t}} d \qquad (C. 0. 5)$$

式中: la——受拉钢筋锚固长度 (mm);

ft——混凝土轴心抗拉强度设计值,按现行国家标准《混凝土结构设计规范》GB 50010 的规定取用;当混凝土强度等级高于 C40 时,按 C40 取值;

d——锚筋公称直径 (mm);

- α_s——锚筋的外形系数,光圆钢筋取 0.16,带肋钢筋 取 0.14。
- 2 抗震设计的外墙,钢筋锚固长度应按本标准公式 (C. 0.5) 计算值的 1.1 倍确定。
- 3 当锚筋的拉应力设计值小于钢筋抗拉强度设计值 f_y 时,其锚固长度可适当减小,但不应小于 15 倍锚固钢筋直径。
- **C. 0. 6** 受剪和受压直锚筋的锚固长度不应小于 15 倍锚固钢筋直径。除受压直锚筋外,当采用 HPB300 级钢筋时,钢筋末端应作 180°弯钩,弯钩平直段长度不应小于 3 倍的锚筋直径。
- **C. 0.7** 锚板厚度应根据其受力情况按计算确定,且宜大于锚筋直径的 0.6 倍。锚筋中心至锚板边缘的距离 c 不应小于锚筋直径的 2 倍和 20mm 的较大值。

对受拉和受弯预埋件,其钢筋的间距 b、b₁和锚筋至构件 边缘的距离 c、c₁均不应小于锚筋直径的 3 倍和 45mm 的较

大值。

对受剪预埋件,其锚筋的间距 b、 b_1 均不应大于 300mm,且 b_1 不应小于锚筋直径的 6 倍及 70mm 的较大值;锚筋至构件边缘的距离 c_1 不应小于锚筋直径的 6 倍及 70mm 的较大值,锚筋的间距 b、锚筋至构件边缘的距离 c 均不应小于锚筋直径的 3 倍和 45mm 的较大值。

附录 D 双向板计算系数

D. 0.1 双向板挠度和弯矩应按下列公式计算:

$$u = \mu \frac{q_k l_x^4}{D}$$
 (D. 0. 1-1)

$$M = mq_k l_x^2$$
 (D. 0. 1-2)

$$D = \frac{Eh^3}{12(1-v^2)}$$
 (D. 0. 1-3)

$$m = m_x + \nu m_y$$
 (D. 0. 1-4)

式中: u——双向板挠度 (mm);

qk——垂直于双向板平面的荷载标准值;

M---双向板弯矩 (Nmm);

l_x——双向板板区格短边边长 (mm);

D——刚度 (Nmm):

E---弹性模量 (N/mm²);

h---板厚 (mm);

ν——泊松比;

m---弯矩系数;

μ——板中心点的挠度系数;

 m_{\star} — 短边板跨中心点处的弯矩系数;

m,——长边板跨中心点处的弯矩系数。

D. 0. 2 当四边简支(图 D. 0. 2)时,挠度系数和弯矩系数应按表 D. 0. 2 取值。

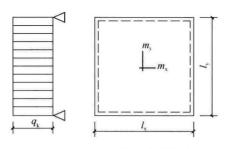


图 D. 0.2 四边简支计算简图

表 D. 0. 2 四边简支挠度系数和弯矩系数

$l_{\rm x}/l_{\rm y}$	μ	m_{x}	$m_{ m y}$	$l_{\rm x}/l_{\rm y}$	μ	m_{x}	$m_{ m y}$
0.50	0.01013	0.0965	0.0174	0.80	0.00603	0.0561	0.0334
0.55	0.00940	0.0892	0.0210	0.85	0.00547	0.0506	0.0348
0.60	0.00867	0.0820	0.0242	0.90	0.00496	0.0456	0.0358
0.65	0.00796	0.0750	0.0271	0.95	0.00449	0.0410	0.0364
0.70	0.00727	0.0683	0.0296	1.00	0.00406	0.0368	0.0368
0.75	0.00663	0.0620	0.0317				

- 注: 1 使板的受荷面受压者弯矩系数为正;
 - 2 变位方向与荷载方向相同者挠度系数为正。

D. 0. 3 当三边简支、一边固定(图 D. 0. 3)时,挠度系数和弯矩系数应按表 D. 0. 3 取值。

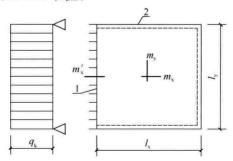


图 D. 0. 3 三边简支、一边固定计算简图 1—固定边: 2—简支边

主 D O 3	二油箔士	一边固定挠度系数和弯矩系数
75 D. U. O	一加间立。	一切向正检度系数和管护系数

$l_{\rm x}/l_{\rm y}$	$l_{\rm y}/l_{\rm x}$	μ	$\mu_{ ext{max}}$	m_{x}	$m_{ m xmax}$	$m_{ m y}$	$m_{ m ymax}$	m_{x}^{\prime}
0.50		0.00488	0.00504	0.0583	0.0646	0.0060	0.0063	-0.1212
0.55		0.00471	0.00492	0.0563	0.0618	0.0081	0.0087	-0.1187
0.60		0.00453	0.00472	0.0539	0.0589	0.0104	0.0111	-0.1158
0.65		0.00432	0.00448	0.0513	0.0559	0.0126	0.0133	-0.1124
0.70		0.00410	0.00422	0.0485	0.0529	0.0148	0.0154	-0.1087
0.75		0.00388	0.00399	0.0457	0.0496	0.0168	0.0174	-0.1048
0.80	0	0.00365	0.00376	0.0428	0.0463	0.0187	0.0193	-0.1007
0.85	3	0.00343	0.00352	0.0400	0.0431	0.0204	0.0211	-0.0965
0.90		0.00321	0.00329	0.0372	0.0400	0.0219	0.0226	-0.0922
0.95		0.00299	0.00306	0.0345	0.0369	0.0232	0.0239	-0.0880
1.00	1.00	0.00279	0.00285	0.0319	0.0340	0.0243	0.0249	-0.0839
	0.95	0.00316	0.00324	0.0324	0.0345	0.0280	0.0287	-0.0882
	0.90	0.00360	0.00368	0.0328	0.0347	0.0322	0.0330	-0.0926
	0.85	0.00409	0.00417	0.0329	0.0347	0.0370	0.0378	-0.0970
	0.80	0.00464	0.00473	0.0326	0.0343	0.0424	0.0433	-0.1014
	0.75	0.00526	0.00536	0.0319	0.0336	0.0485	0.0494	-0.1056
	0.70	0.00596	0.00605	0.0308	0.0323	0.0553	0.0562	-0.1096
	0.65	0.00670	0.00680	0.0291	0.0306	0.0627	0.0637	-0.1133
	0.60	0.00752	0.00762	0.0268	0.0289	0.0707	0.0717	-0.1166
	0.55	0.00838	0.00848	0.0239	0.0271	0.0792	0.0801	-0.1193
	0.50	0.00927	0.00935	0.0205	0.0249	0.0880	0.0888	-0.1215

- 注: 1 使板的受荷面受压者弯矩系数为正, 反之为负;
 - 2 变位方向与荷载方向相同者挠度系数为正;
 - 3 μmax 最大挠度系数;
 - 4 m_{xmax}——短边板跨内最大挠度系数;
 - 5 mymax——长边板跨内最大挠度系数;
 - 6 m'x——固定边中点沿 lx 方向的弯矩系数。

D. 0. 4 当对边简支、对边固定(图 D. 0. 4)时,挠度系数和弯矩系数应按表 D. 0. 4 取值。

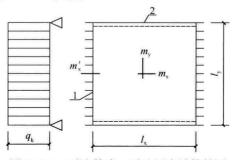


图 D. 0.4 对边简支、对边固定计算简图 1-固定边; 2-简支边

表 D. 0. 4 对边简支、对边固定挠度系数和弯矩系数

$l_{\mathrm{x}}/l_{\mathrm{y}}$	$l_{\rm y}/l_{\rm x}$	μ	m_{x}	$m_{ m y}$	m_{x}'
0.50		0.00261	0.0416	0.0017	-0.0843
0. 55		0.00259	0.0410	0.0028	-0.0840
0.60		0.00255	0.0402	0.0042	-0.0834
0. 65		0.00250	0.0392	0,0057	-0.0826
0.70		0.00243	0.0379	0.0072	-0. 0814
0.75		0.00243	0.0379	0.0072	-0.0799
0.73		0.00238	0.0351	0.0103	
5-207-002005					-0.0782
0.85		0.00220	0. 0335	0.0118	-0.0763
0.90		0.00211	0.0319	0.0133	-0.0743
0.95		0.00201	0.0302	0.0146	-0.0721
1.00	1.00	0.00192	0.0285	0.0158	-0.0698
	0.95	0.00223	0.0296	0.0189	-0.0746
	0.90	0.00260	0.0306	0.0224	-0,0797
	0.85	0.00303	0.0314	0.0266	-0.0850
	0.80	0.00254	0.0319	0.0316	-0.0904
	0.75	0.00413	0.0321	0.0374	-0.0959
	0.70	0.00482	0.0318	0.0441	-0.1013
	0.65	0.00560	0.0308	0.0518	-0.1066
	0.60	0.00647	0.0292	0.0604	-0. 1114
	0.55	0.00743	0.0267	0.0698	-0. 1156
	0.50	0.00743	0.0234	0.0798	-0. 1191
	0. 30	0.00044	0.0234	0.0190	-0.1191

注: 1 使板的受荷面受压者弯矩系数为正,反之为负;

² 变位方向与荷载方向相同者挠度系数为正;

³ 固定边中点沿 lx 方向的弯矩系数。

附录 E GRC 外墙分项工程验收表

E. 0.1 进场验收记录应符合表 E. 0.1 的规定。

表 E. 0.1 GRC 材料进场验收记录

工程名称				检验日期	
生产厂家				检验批次	
验收数量		件, m ²		抽检比例	%
抽检产品		检验	项目		±∆ 10.0 ± 1 ⊞
编号	外观	尺寸	包装	其他	检验结果
检验结论					
646- (*** 131/	施工单位	位质检员		建设(监理)单	单位
签字栏 -	年	月日		9	年 月 日

E. 0.2 中间验收记录应符合表 E. 0.2 的规定。

表 E. 0.2 GRC 外墙分项安装工程中间验收记录

工程名称	
施工单位	
检验批次部位	批次数量
检验项目	检验结果
施工单位 验收结论	施工单位 检验员 年 月 日
监理单位 验收结论	监理 工程师 年 月 日

本标准用词说明

- 1 为便于在执行本标准条文时区别对待,对要求严格程度 不同的用词说明如下:
 - 1) 表示很严格,非这样做不可的: 正面词采用"必须",反面词采用"严禁";
 - 2) 表示严格,在正常情况下均应这样做的: 正面词采用"应",反面词采用"不应"或"不得";
 - 3) 表示允许稍有选择,在条件许可时首先应这样做的: 正面词采用"官",反面词采用"不官":
 - 4) 表示有选择,在一定条件下可以这样做的,采用"可"。
- **2** 条文中指明应按其他有关标准执行的写法为: "应符合……的规定"或"应按……执行"。

引用标准名录

- 1 《建筑结构荷载规范》 GB 50009
- 2 《混凝土结构设计规范》GB 50010
- 3 《建筑抗震设计规范》 GB 50011
- 4 《建筑设计防火规范》GB 50016
- 5 《钢结构设计标准》GB 50017
- 6 《冷弯薄壁型钢结构技术规范》GB 50018
- 7 《建筑物防雷设计规范》GB 50057
- 8 《民用建筑热工设计规范》 GB 50176
- 9 《公共建筑节能设计标准》GB 50189
- 10 《钢结构工程施工质量验收规范》GB 50205
- 11 《铝合全结构设计规范》 GB 50429
- 12 《钢结构焊接规范》 GB 50661
- 13 《优质碳素结构钢》GB/T 699
- 14 《碳素结构钢》GB/T 700
- 15 《铝合金建筑型材》GB/T 5237
- 16 《埋弧焊用碳钢焊丝和焊剂》GB/T 5293
- 17 《埋弧焊用低合金钢焊丝和焊剂》GB/T 12470
- 18《金属覆盖层 钢铁制件热浸镀锌层技术要求及试验方

法》GB/T 13912

- 19 《硅酮和改性硅酮建筑密封胶》GB/T 14683
- 20 《玻璃纤维增强水泥性能试验方法》GB/T 15231
- 21 《建筑用硅酮结构密封胶》GB 16776
- 22 《建筑墓墙》GB/T 21086
- 23 《石材用建筑密封胶》 GB/T 23261
- 24 《民用建筑电气设计规范》 JGJ 16

- 25 《严寒和寒冷地区居住建筑节能设计标准》JGJ 26
- 26 《夏热冬暖地区居住建筑节能设计标准》JGJ 75
- 27 《建筑施工高处作业安全技术规范》JGJ 80
- 28 《高层民用建筑钢结构技术规程》JGJ 99
- 29 《居住建筑节能检测标准》 JGJ/T 132
- 30 《夏热冬冷地区居住建筑节能设计标准》JGJ 134
- 31 《混凝土结构后锚固技术规程》JGJ 145
- 32 《聚氨酯建筑密封胶》 JC/T 482
- 33 《混凝土接缝用建筑密封胶》JC/T 881
- 34 《玻璃纤维增强水泥 (GRC) 装饰制品》JC/T 940
- 35 《玻璃纤维增强水泥外墙板》JC/T 1057
- 36 《混凝土结构工程用锚固胶》JG/T 340

中华人民共和国行业标准

玻璃纤维增强水泥 (GRC) 建筑应用 技术标准

JGJ/T 423 - 2018

条文说明

编制说明

《玻璃纤维增强水泥(GRC)建筑应用技术标准》JGJ/T423-2018, 经住房和城乡建设部2018年2月14日以第1842号公告批准、发布。

本标准编制过程中,编制组进行了广泛的调查研究,总结了 我国工程建设中玻璃纤维增强水泥(GRC)应用技术的实践经验,同时也调查和参考了国外相关技术、标准等,并通过调查和 测试取得了相关重要技术参数。

为便于广大建设、设计、施工、咨询、监理、科研、学校等单位有关人员在使用本标准时能正确理解和执行条文规定,《玻璃纤维增强水泥(GRC)建筑应用技术标准》编制组按照章、节、条顺序编制了本标准的条文说明,对条文规定的目的、依据以及执行中需注意的有关事项进行了说明。但是,本条文说明不具备与标准正文同等的法律效力,仅供使用者作为理解和把握标准规定的参考。

目 次

1	总	侧	· 89
3	材为	악	• 91
	3. 2	金属材料	• 91
	3.4	其他材料	• 91
4	建筑	筑设计	
	4.1	一般规定	92
	4.2	性能与检测要求 ************************************	
	4.3	建筑构造设计 ************************************	94
	4.4	GRC 构件的构造与连接设计 ······	• 95
	4.5	防火与防雷设计 ************************************	102
5	结	勾设计基本规定	104
	5.1	一般规定	104
	5.2		105
	5.3	荷载与作用	107
	5.4	作用效应组合	110
	5.5	连接设计	112
	5.6	承载力极限状态设计 · · · · · · · · · · · · · · · · · · ·	115
	5.7	抗裂验算	120
	5.8	锚固承载力设计	120
6	GF	C 平板结构设计 ······	124
	6.1	GRC 平板 ·····	124
	6.2	横梁	125
	6.3	立柱	126
7	GF	C 带肋板结构设计 ······	129
	7.1	面板	129

	7.2	加强肋 ************************************	129
	7.3	极限状态设计 ************************************	129
8	GR	C 背附钢架板结构设计 ······	132
	8.1	GRC 面板 ***********************************	132
	8.2	背附钢架设计 ************************************	135
9	制化	作加工	137
	9.1	一般规定 ************************************	137
	9.2	GRC 构件制作 ······	137
	9.4	检验	137
10) 安	装施工	139
	10.1	一般规定	139
	10.3	施工准备	139
	10.4	安装施工 ************************************	139
	10.5	安装质量要求 ······	140
1	1 验	收·····	141
	11.2	进场验收 ************************************	141
	11.4	竣工验收 ************************************	141
1:	2 维	修与保养	142
	12. 1	一般规定 ************************************	142
	12. 3	清洗和保养 ••••••	142

1 总 则

1.0.1 玻璃纤维增强水泥 (GRC) 外墙板及装饰制品 (统称为 GRC 构件) 是一种轻质、高强、可造型的新型材料,广泛应用 在各类建筑的非承重外墙工程中。就材料本身的特性而言,它最适用的领域是建筑物的外墙。近二十年来该材料在国内外都得到 了较大的发展,目前我国生产的 GRC 构件产量和工程应用量居 世界之首,每年有数百万平方米的 GRC 构件应用到各类建筑工程上。

《玻璃纤维增强水泥外墙板》JC/T 1057 和《玻璃纤维增强水泥(GRC)装饰制品》JC/T 940 仅对相关产品的生产加工质量控制起到了很好的规范作用,但构件在设计、施工及质量验收等方面无标准可依,导致 GRC 构件坠落、开裂、翘曲等现象发生,严重影响该产品在建筑工程的推广应用。为适应 GRC 构件应用技术的发展及规范该产品的应用,特制定本标准。

1.0.2 本条文规定了本标准的适用范围。

在 GRC 外墙板或装饰制品的生产过程中,由于所用胶凝材料为水泥,其碱性对玻璃纤维有侵蚀作用,因此生产 GRC 外墙板或装饰制品要求使用有较强抗碱能力的耐碱玻璃纤维为主要增强材料;所用水泥主要有硫铝酸盐水泥和硅酸盐水泥。硫铝酸盐水泥碱度较低,对玻璃纤维的侵蚀作用较小,通常把采用硫铝酸盐水泥为胶凝材料,耐碱玻璃纤维为主要增强材料制作 GRC 构件的技术路线称作"双保险"技术路线;采用硅酸盐水泥作为胶凝材料时,因其碱度高对玻璃纤维的侵蚀作用大,除要求增强材料为高锆耐碱玻璃纤维外,还应掺入能与硅酸盐水泥水化产物Ca(OH)2发生反应的硅质材料如硅灰、粉煤灰、磨细矿渣或偏高岭土等,以降低其碱度,确保 GRC 的耐久性。

GRC 外墙板或装饰制品虽然不分担主体建筑物的荷载,但 其自身要承受风荷载、地震作用和温湿度变化等,设计时要考虑 风荷载、地震作用、温度和湿度变化对它产生的影响。

为使 GRC 外墙板或装饰制品在建筑工程中应用具有足够的 安全性,应对其材料选用、建筑与结构设计、制作加工、安装施工、验收,以及维修与保养进行规定。

1.0.3 凡国家现行标准中已有明确规定的,本标准原则上不再重复。在材料选用、设计、制作、安装施工及质量验收中除应符合本标准的要求外,尚应满足国家现行有关标准的规定。在采用国内外相关的配套专用技术时,应符合标准化管理的有关规定。

3 材 料

3.2 金属材料

3.2.4 GRC 构件常用的预埋件包括预埋套筒、螺栓或扁钢、钢筋代替预埋件存在较严重的后期安全隐患。

3.4 其他材料

3.4.1 防水性及耐污染性能指标及测试方法参考标准《建筑装饰用天然石材防护剂》JC/T 973 - 2005 附录 A 和附录 B。

4 建筑设计

4.1 一般规定

4.1.1~4.1.3 GRC 外墙建筑设计是由建筑设计单位和 GRC 生产施工单位共同完成的。设计单位主要完成 GRC 外墙的立面设计和建筑构造设计; GRC 生产施工单位主要完成 GRC 外墙的具体深化设计工作。

GRC 外墙的空间形状、表面造型、质感、色彩、分格尺寸、建筑构造及接缝等是 GRC 外墙建筑设计的主要内容。上述各要素的设计确定不仅要考虑满足建筑物的使用功能,与周围环境相协调,以及经济适用等基本要求,还应与当前的制造工艺水平相适应;为确保该设计方案实施的安全性和可靠性,其建筑设计还应满足本标准的相应技术要求。

4.1.5 GRC 外墙在长期使用过程中会出现表面被污染及各种因素造成的破坏等,因此设计时应考虑到使用过程中的维护、清洁和必要时进行更换等。

4.2 性能与检测要求

- 4.2.1 GRC 外墙的性能要求与建筑物的类别、高度及体形有关。如建筑物的性质及重要性不同,对 GRC 外墙的性能要求也不同;还有建筑物高度及体形的不同,对 GRC 外墙的抗风压变形性能要求也会不同。另一方面,GRC 外墙性能要求还与建筑物所在地的地理、气候、环境等条件相关。如沿海或台风多发地区,GRC 外墙的抗风压变形性能和抗雨水渗漏性能要求会比较高;又如寒冷地区和炎热地区则要求 GRC 外墙的保温隔热性能会更高一些。
- 4.2.2 GRC 外墙的抗风压性能是指在其风荷载作用下,保持正

常使用功能、不发生任何损坏的能力。GRC 外墙的抗风压性能应根据现行国家标准《建筑幕墙气密、水密、抗风压性能检测方法》GB/T 15227 所规定的方法确定。

- **4.2.3** GRC 外墙及其围护结构的气密性能是根据现行国家标准《建筑幕墙空气渗透性能检测方法》GB/T 15226 的规定确定的。GRC 外墙及其围护结构的气密性能是指在风压作用下,阻止空气透过 GRC 外墙及其围护结构的性能。对于由 GRC 构件、空气层、防水隔汽层、保温层及剪力墙(或填充墙)等组成的GRC 外墙及其围护结构,其 GRC 外墙的气密性不作要求。
- **4.2.4** GRC 外墙的水密性能应符合设计要求;对于具有水密性能设计要求的 GRC 外墙,其接缝构造、密封材料及施工工艺等应满足相应水密性能指标的设计要求。开放式 GRC 外墙的水密性能不作规定。
- 4.2.5 GRC 外墙平面内变形,是由于建筑物受风荷载或地震作用后,建筑物各层间发生相对位移时产生的随动变形。这种平面内变形对 GRC 外墙造成的损害不容忽视。GRC 外墙平面内变形性能,应根据是否需要进行抗震设计提出不同要求。地震作用时,近似取主体结构在多遇地震作用下弹性层间位移角限值的 3 倍为控制指标。

根据国家现行标准《建筑抗震设计规范》GB 50011 和《高层建筑混凝土结构技术规程》JGJ 3 的规定,在风荷载或多遇地震作用下,主体结构楼层最大弹性层间位移角限值如表 1。层间位移角即楼层层间位移与层高的比值。

结构类型	弹性层间位移角限值
钢筋混凝土框架	1/500
钢筋混凝土框架-剪力墙、框架-核心筒、板柱-剪力墙	1/800
钢筋混凝土筒中筒、剪力墙	1/1000
钢筋混凝土框支层	1/1000
多、高层钢结构	1/300

表 1 楼层弹性层间位移角限值

- **4.2.9** GRC 外墙及其围护结构的隔声性能应根据建筑物的使用功能和环境条件进行设计。不同功能的建筑所允许的噪声等级可根据现行国家标准《民用建筑隔声设计规范》GB 50118 的规定确定。外墙的隔声性能应为室外噪声级和室内允许噪声级之差。
- **4.2.10** 由于抗风压性能是所有 GRC 外墙应具备的基本性能 (不含开放式 GRC 外墙),因此是必要检测项目。有抗震要求时,可增加平面内变形性能检测。有保温、隔声等要求时,可增加相应的检测项目。
- 4.2.12 GRC 外墙性能检测中,由于安装施工的缺陷,使某项性能未达到规定要求的情况时有发生,这种缺陷有可能弥补,故允许对安装施工工艺进行改进,修补缺陷后重新检测,以节省人力、物力,但要求检测报告中说明改进的内容,并在实际工程中,按改进后的安装施工工艺进行施工。由于材料或设计缺陷造成 GRC 外墙性能未达到规定值域时,修改设计或更换材料后重新制作试件,另行检测。

4.3 建筑构造设计

- **4.3.1** GRC 外墙在安全、实用、绿色、美观的前提下,便于制作安装、维修保养和局部更换是其建筑构造设计的基本要求。
- **4.3.2** 保温材料受潮后,其保温性能会显著下降,所以保温材料应具有防潮性能或采取有效的防潮措施。保温材料的保温性能和防火性能是保温材料的基本性能指标,应按国家现行相关标准的规定设计选用。
- **4.3.3** 接缝宜采用材料防水或材料防水加构造防水的形式,开放式外墙应在保温层外做好防水处理。檐口等凸出部位推荐加装集中排水装置,防止屋面雨水渗入保温层。
- **4.3.4** 在连接部位的摩擦面设置柔性垫片是为了避免 GRC 构件在连接处产生摩擦噪声;对于销槽连接形式,亦可在销槽内采用弹性胶灌注处理。
- 4.3.5 不同金属相互接触处,易产生双金属腐蚀,所以要求设

置绝缘垫片或采取其他防腐蚀措施。在通常情况下,不锈钢材料不易产生双金属腐蚀,一般不要求设置绝缘垫片。

- **4.3.6** GRC 外墙的立面分格缝优先考虑设置在建筑阴角、装饰造型阴角和滴水线及便于安装并不影响美观的部位。对于较小的窗洞尺寸,一般采用整板内预留窗洞的方法解决。对于较大尺寸的窗洞,往往按结构位移最小原则分缝。
- **4.3.7** GRC 构件的接缝应有一定宽度,以满足 GRC 构件的正常变形和位移要求。通常情况下,GRC 构件的接缝宽度可参照下列公式计算:

对于拼接胶缝:

$$W_{\rm b} = \frac{A}{\delta} + B + C \tag{1}$$

对于开放式接缝:

$$W_b = B + C \tag{2}$$

式中: W_b——接缝宽度 (mm);

A——GRC 构件在一年内因温湿度变化可能产生的位移量(mm);

δ──密封胶的位移能力(%):

B——GRC 构件的制造误差,可取 3mm;

C——考虑地震作用等其他因素影响的预留量 (mm), 取不小于 2mm。

4.4 GRC 构件的构造与连接设计

4.4.1 为了确保 GRC 平板结构及锚固的安全可靠,同时还考虑到 GRC 平板没有加强肋,易产生变形。为此,本标准参考石材的厚度要求,对 GRC 平板的最小厚度作出了规定。

当前,GRC平板的安装施工通常是在已完成的结构墙(或填充墙)外侧采用插装的工艺进行GRC平板的安装。在这种工况和工艺条件下,GRC平板采用四点支承并限制板面积为1m²范围是合理的;对于其他安装工况,安装工艺或GRC平板的变

形很小的情况下,GRC 平板的支承点数及板面面积可不受上述限制。

4.4.2 实践证明,厚度低于 8mm 的 GRC 板容易产生表面龟裂 现象,因此,本标准确定 GRC 构件的板面最小厚度为 10mm。

板的四周宜优先考虑作为加强肋的设置部位,如加强肋不在该位置,则四周应做不小于 30mm 高的反沿,反沿厚度不小于板厚。预埋连接件或安装开槽位置应优先考虑加强肋部位。

4.4.3 在通常情况下,GRC 带肋板的板面尺寸越大,其加强肋的截面尺寸也会越大,其温湿度效应也越大。根据我国 GRC 带肋板大量工程使用的经验并参考相关国际规范的规定,认为 GRC 带肋板板面尺寸不大于 4500mm 时,其板面开裂的风险很小。

GRC 构件存在一个合理的跨高比。当跨高比小于 16 时,GRC 构件可能因层间剪切强度不够而发生破坏;但当跨高比过大时,GRC 构件可能会出现加强肋截面宽度过大而不经济的情形。

4.4.4 为了保证 GRC 构件边缘具有足够抵抗变形的能力, GRC 构件边缘应制作加强肋, 加强肋截面尺寸推荐按图 1 设计制作。

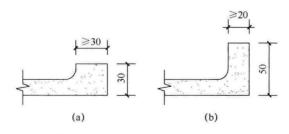


图 1 面板边缘加强肋截面尺寸示意

GRC 材料相对于混凝土而言,具有较显著的湿度效应。因此 GRC 面板与背附钢架间的连接避免采用刚性连接形式,而应采用柔性连接形式。柔性连接推荐按如下构造要求设计:

- 1 L形柔性锚杆采用热镀锌钢筋或不锈钢材料制作,直径 一般为 6mm 或 8mm;
- **2** 柔性锚杆相互平行且水平排列,脚趾方向指向面板几何中线,锚杆脚部上端紧贴钢架竖龙骨靠近面板中线一侧连接(图 2);

图 2 柔性锚杆排列方向

3 L形锚杆与面板采用预埋方式锚固。制作时,覆盖在 L 形锚杆脚部的粘结盘与 GRC 面板均处于初凝前的塑性状态,工 艺上保证两者紧密结合;成型后,L 形锚杆根部外露(脚部长度 $80\text{mm} \sim 90\text{mm}$),并保证自由旋转;粘结盘尺寸 $a \times b = (160 \sim 180)\text{mm} \times (90 \sim 100)\text{mm}$,有效面积一般不小于 160cm^2 ;粘结盘厚度不小于 1.5h (h 为面板厚度);L 形锚杆有效长度 L 不小于 100mm;粘结盘表面与背附钢架下表面最小间距不小于 13mm (图 3);

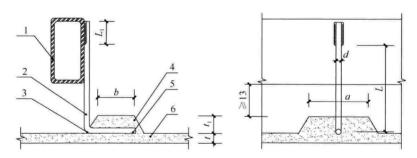


图 3 GRC 面板与背附钢架间的柔性锚固构造示意 1-钢架; 2-L形锚杆; 3-脚跟; 4-粘结盘; 5-脚趾; 6-GRC 面板

4 L形锚杆与钢架竖龙骨的连接一般采用焊接;但对于有特殊防腐要求或板幅高度很大的面板,亦可采用铰接形式。当采用焊接时,其焊缝长度不小于 25mm 或按焊缝强度计算确定;

当采用铰接时,铰接中心位于 L 形锚杆腿部轴线上 (图 4)。

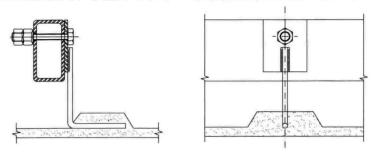
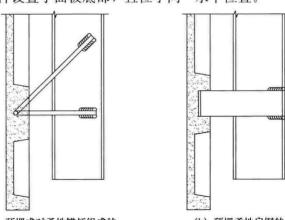
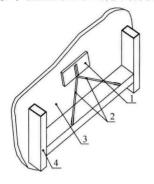
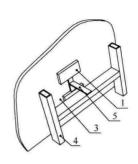



图 4 L形锚杆与钢架的铰接构造示意

GRC 面板的重力通过重力锚固件传递到钢架上。重力锚固由一对与钢架呈三角形排列的锚杆组成,其结构形式如图 5 (a) 所示;两锚杆的脚部预埋在面板内,其构造要求与柔性锚杆一致;两锚杆的腿上部与钢架连接,其构造要求亦与柔性锚杆与钢架的连接相同。当锚杆重力锚固件受结构尺寸限制时,其重力锚固构造形式也可采用预埋柔性钢板的构造形式,如图 5 (b)。重力锚固件的数量由结构计算确定,但不少于柔性锚杆的列数;重力锚固件设置于面板底部,且位于同一水平位置。




(a) 预埋成对柔性锚杆组成的 重力锚固构造

(b) 预埋柔性扁钢的 重力锚固构造

图 5 GRC 面板重力锚固构造形式示意

4.4.5 抗震锚固构造一般采用呈等腰三角形布置的锚杆结构或采用水平设置的柔性钢板结构形式(图 6)。

(a) 预埋锚杆抗震构造

(b) 预埋柔性钢板抗震构造

图 6 抗震锚固的构造形式示意 1-GRC 粘结盘; 2-抗震锚杆; 3-GRC 面板; 4-背附钢架; 5-抗震柔性钢板

4.4.6 柔性连接一方面保证 GRC 构件能将其受到的各种荷载可靠地传递到主体结构上,同时还能使 GRC 构件自身相对于主体结构具有足够相对位移能力,以避免因主体结构变形而承受过大的变形或因 GRC 构件自身变形而产生过大的应力。为满足上述基本要求,GRC 构件与主体结构(或支承结构)可参考采用如图 7~图 12 所示的连接构造形式。

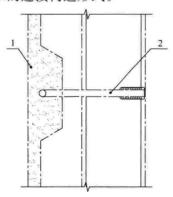


图 7 柔性锚杆连接构造形式示意 1-GRC 构件; 2-柔性锚杆

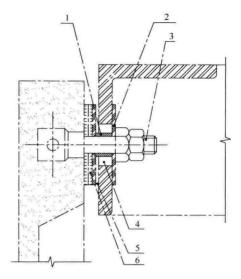


图 8 控制间隙的摩擦连接构造形式示意 1—衬管;2—大垫片;3—连接螺杆;4—过大孔 (预留位移);5—间隙;6—马蹄形垫片

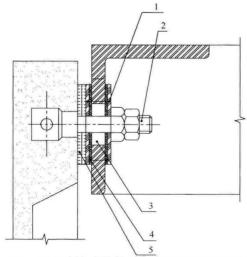


图 9 降低摩擦系数的摩擦连接构造形式示意 1—大垫片; 2—连接螺杆; 3—过大孔(预留位移); 4—滑移片; 5—马蹄形垫片

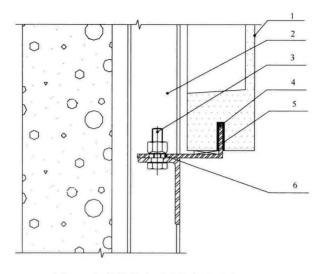


图 10 短槽挂件支承连接构造形式示意 1-GRC 构件; 2-立柱; 3-螺杆、垫片; 4-托件; 5-胶粘剂; 6-过大孔(预留位移)

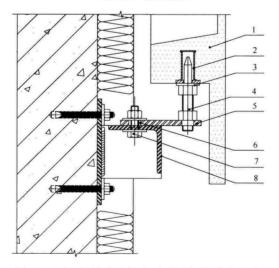


图 11 预埋短槽升降销支承连接构造形式示意 1—GRC 构件; 2—短槽预埋件; 3—大垫圈; 4—升降销; 5—托板; 6—长孔(预留位移); 7—热镀锌螺母、螺杆、大垫圈; 8—牛腿

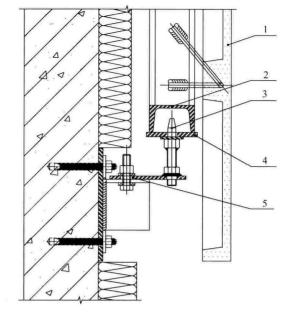


图 12 钢制槽孔升降销支承连接构造形式示意 1-GRC 背附钢架板;2--背附钢架;3--升降销; 4-短槽连接板;5--长孔(预留位移)

4.5 防火与防雷设计

- 4.5.2 防火封堵是目前建筑设计中应用比较广泛的防火隔烟方法。通过对上述各部位的缝隙填塞不燃材料或由此形成的系统,可达到防止火焰和高温烟气在建筑内部扩散的目的。防火封堵材料或封堵系统应经过国家认可的专业机构进行测试,合格后方可使用。
- **4.5.3** 耐久性、变形能力、稳定性是防火封堵材料或系统的基本要求,应根据缝隙的宽度、缝隙的性质(如是否发生伸缩变形等)、相邻构件材质、周边其他环境因素以及设计要求综合考虑,合理选用。一般而言,缝隙大、伸缩率大、防火等级高,则对防火封堵材料或系统的要求越高。

- **4.5.4** GRC 外墙工程的防火封堵构造系统有许多有效的做法,但无论何种方法,构成系统的材料都应具备设计规定的耐火性能。
- **4.5.6** 为了避免两个防火分区因 GRC 构件破裂而相通,造成火势迅速蔓延,规定同一 GRC 构件不宜跨越两个防火分区。

5 结构设计基本规定

5.1 一般规定

- 5.1.1、5.1.2 GRC 外墙是建筑物的围护结构,只承受自身重力荷载和作用其上的风荷载、地震作用以及温湿度作用等,不分担主体结构承受的荷载和地震作用。为此,GRC 构件与主体结构间应具有一定的相对位移能力,以免当主体结构因外荷载作用产生变形时,使 GRC 构件产生不能承受的内力和变形。GRC 构件面板厚度通常为 10mm ~20mm,一旦出现开裂,极易产生贯穿性裂缝而影响结构的安全度和装饰效果,因此,GRC 构件在正常使用条件下还应有优良的抗裂性。对于抗震设计的 GRC 外墙,在多遇地震作用下,GRC 外墙不允许破坏,应保持完好;在设防裂度地震作用下,GRC 外墙不允许破坏,应保持完好;在设防裂度地震作用下,GRC 外墙不应有严重破坏,一般允许局部破碎,经修理后可继续使用;在罕遇地震作用下,GRC 外墙必然破坏严重,面板破碎,但骨架不应脱落,倒塌。
- 5.1.3 在通常情况下,GRC 构件在弹性范围内工作,因此,其内力与变形应按弹性方法分析计算。但对于短期使用的GRC 构件,当进行承载力设计时,其应力可能在比例极限强度以上的塑性区段,此种情况下,GRC 构件的内力和变形根据具体受力情况,按其他非线性方法分析计算。

GRC 外墙结构设计应区分是否有抗震要求。对于非抗震设防地区,只需考虑风荷载、重力荷载以及温湿度作用;对于抗震设防地区,除考虑上述荷载和作用外,还应考虑地震作用。

5.1.4 GRC 构件在生产和施工阶段如出现过载或产生过大变形,则无法通过安装验收和交付正常使用。因此,对 GRC 构件在生产和施工阶段可能产生的荷载和作用进行分析计算是必要的。一般情况下,在生产阶段应分析计算 GRC 构件的自重荷载

和脱模吸附力作用;在施工阶段,应分析计算 GRC 构件的自重 荷载和吊装惯性力作用(或其他施工荷载)。

- 5.1.6、5.1.7 GRC 外墙应根据实际受力情况分别计算自重荷载、风荷载、地震作用以及温湿度作用。承载力极限状态设计时,应考虑作用效应的基本组合。正常使用极限状态设计时,应考虑作用效应的标准组合,GRC 构件除与其他结构构件一样需进行挠度验算外,还应进行抗裂承载力验算。本标准公式(5.1.6-1)、公式(5.1.6-2)和公式(5.1.7-1)分别为承载力设计表达式和抗裂设计表达式的通用形式,作用效应设计值 S、S_E和 S_F可以是内力,也可以是应力;抗力设计值 R 和 R_F可以是承载力设计值,也可以是材料强度设计值。
- **5.1.8、5.1.9** GRC 构件的预埋锚固连接或后锚固连接的安全等级及本标准公式(5.1.9-1)、公式(5.1.9-3)的规定依照国家现行标准《建筑抗震设计规范》GB 50011 和《混凝土结构后锚固技术规程》JGJ 145 的有关规定确定。
- **5.1.10** 本标准 第 6 章 ~ 第 8 章 对常用的三种 GRC 外墙板结构设计及验算进行了规定。随着 GRC 外墙的发展,GRC 构件的板形和构造形式会越来越复杂,结构设计的计算工作量也会越来越大,采用有限元法进行计算也是一种选择。

5.2 材料力学性能

- 5.2.1 钢材主要用于连接件、预埋件和支承钢结构,其计算和设计要求应按现行国家标准《钢结构设计标准》GB 50017 的规定进行,锚栓材料性能等级及机械性能指标,应根据现行国家标准《紧固件机械性能 螺栓、螺钉和螺柱》GB/T 3098.1 确定。
- **5.2.2** 不锈钢材料(管材、棒材、型材)主要用于 GRC 外墙的连接件和支承结构,其强度设计值比照钢结构的安全度略有增大,总安全系数约为 1.6。
- 5.2.3 铝合金型材的强度设计值根据《玻璃幕墙工程技术规范》 JGJ 102-2003 的规定按下式计算:

$$f_{\rm a} = \frac{f_{\rm ak}}{K_2} = \frac{f_{\rm ak}}{1.286} \tag{3}$$

铝型材的强度标准值 f_{ak} ,一般取为 $\sigma_{p0.2}$ 。 $\sigma_{p0.2}$ 指铝材有 0.2%残余变形时所对应的应力值,即铝型材的条件屈服强度。 $\sigma_{p0.2}$ 可按现行国家标准《铝合金建筑型材》 GB/T 5237 的规定取用。

5.2.6 GRC 材料与其他传统材料一样,其强度具有变异性,一般采用标准值来表示,其值的大小按现行国家标准《建筑结构可靠度设计统一标准》GB 50068 的规定,采用概率分布的 0.05 分位值确定(图 13)。当前,国际上也广泛采用该分位值来确定GRC 材料的强度标准值。另一方面,在正常生产管理条件下,GRC 材料强度标准值的大小又受生产工艺和材料配比控制。针对 GRC 强度的上述变化特点,也为了科学合理地解决 GRC 材料强度标准值的确定方法,当前国际上一般采用实验方法或通过制定 GRC 材料强度等级的方法来确定 GRC 材料强度标准值。

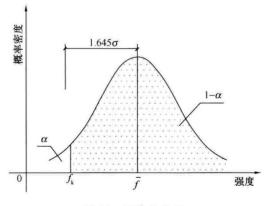


图 13 可靠性分析

如美国预制/预应力混凝土 (PCI) 协会编制的《GFRC 推荐性规范》规定采用实验方法即通过 20 组 GRC 试件经试验实测得到的强度数据,按数理统计方法计算确定 GRC 材料的强度标准值。

又如国际 GRC 协会(GRCA)编制的《GRC 实用设计指南》规定将 GRC 材料的强度标准值的变化范围按三个强度等级划分,其各项性能指标(标准值)如表 2 所示;在 GRC 构件的设计过程中,设计师只需根据经验按表 2 选定的强度等级对应的强度指标(标准值)作为设计计算依据即可。

等级	5	10 或 10P	18 或 18P	
LOP 特征值(N/mm²)	5	7		
MOR 特征值(N/mm²)	5	5 10		
"上部 MOR/底部 MOR"比值	0.8~1.25			
最小重力密度(kg/m³)				
干	1800	1800	1800	
湿	2000	2000	2000	

表 2 GRC 板的强度等级

显然,国际GRCA编制的《GRC实用设计指南》规定的采用强度等级的方法对于设计计算来说更为快捷方便。

为此,本标准确定采用强度等级的方法来划分 GRC 材料的强度值变化范围。本标准表 5.2.6 中的强度等级及性能指标,系根据我国本行业的具体情况及 GRC 的应用技术水平并经实验验证后确定的。

5.2.7 本标准公式 (5.2.7-1) 和公式 (5.2.7-2) 系根据国际 GRCA 编制的《GRC 实用设计指南》规定的经验公式确定。

5.3 荷载与作用

5.3.2 GRC 构件用于建筑物的围护结构,作用其上的风荷载按现行国家标准《建筑结构荷载规范》GB 50009 关于围护结构风荷载计算公式的规定进行计算。

基本风压 w₀ 是根据全国各气象台站历年的最大风速记录, 将不同风速仪高度和时次时距的年最大风速统一换算为离地 10m 高,10min 平均年最大风速数据,根据该风速数据统计分析确定 重现期为 50 年的最大风速,作为当地的基本风速,再按以下贝努利公式计算得到:

$$w_0 = \frac{1}{2} p v_0^2 \tag{4}$$

风荷载高度的变化由风压高度变化系数描述,其值应按现行国家标准《建筑结构荷载规范》GB 50009 确定。

局部风压体形系数是考虑建筑物表面风压分布不均匀而导致局部部位的风压超过全表面平均风压的实际情况作出的调整,局部风压体形系数按现行国家标准《建筑结构荷载规范》GB 50009 确定。

计算围护结构风荷载时的阵风系数应按现行国家标准《建筑结构荷载规范》GB 50009 确定。

5.3.3 GRC 外墙多用于造形独特,立面多变的个性化建筑,风荷载在这些复杂多变的墙面上的分布与一般墙面相比有较大差异,这种墙面的风荷载体形系数不能统一给定。因此,当主体结构通过风洞试验决定体形系数时,GRC 外墙风荷载计算通常采用该体形系数。

对于高度大于 200m 的 GRC 外墙工程, 当没有可靠参照依据时, 宜采用风洞试验确定其风荷载取值。

5.3.4、5.3.5 常遇地震(大约 50 年一遇)作用下,GRC 外墙的地震作用采用简化的等效静力方法计算,地震影响系数最大值按照现行国家标准《建筑抗震设计规范》GB 50011 的规定确定。考虑到 GRC 构件的长期使用性能,为使设防烈度下不产生破损伤人,考虑动力放大系数 $\beta_{\rm E}$ 。按照现行国家标准《建筑抗震设计规范》GB 50011 的有关非结构构件的地震作用计算规定,GRC 外墙结构的地震作用动力放大系数可表示为:

$$\beta_{\rm F} = \gamma \eta \xi_1 \xi_2 \tag{5}$$

式中: γ —非结构构件功能系数,可取 1.4;

η——非结构构件类别系数,可取 0.9;

 ξ ——体系或构件的状态系数,可取 2.0;

 ξ_{\circ} 一位置系数,可取 2.0。

按照公式(5)计算,GRC 外墙结构地震作用动力放大系数 $\beta_{\rm F}$ 约为 5.0。

- **5.3.6** GRC 外墙的支承结构,如横梁、立柱、桁架等,其自身重力荷载产生的地震作用标准值,参照本标准第 5.3.4 条和第 5.3.5 条的原则进行计算。
- 5.3.7、5.3.8 GRC 构件与石材相比,尽管两者的线膨胀系数相近,但由于 GRC 构件的干湿变形明显大于石材,且其幅面尺寸可能是石材的几倍甚至十几倍;再加上 GRC 构件自身的构造也远较石材复杂,因而,仅仅像石材那样采用构造措施解决GRC 构件的温湿度效应是不够的。为此,本标准采用了国外相应设计方法,即将 GRC 构件可能产生的温湿度效应进行估算,并纳入基本组合或标准组合。

由于 GRC 构件的实际使用工况复杂,目前国际上尚未建立 关于 GRC 构件温湿度效应的经验计算公式。本标准表 5.3.7 和 表 5.3.8 系根据国际 GRCA 编制的《GRC 实用设计指南》的相 关规定采用。其中,表 5.3.7 和表 5.3.8 分别表示 GRC 构件随 环境变化产生的温度应力变化范围和干湿应力变化范围。

表 5. 3. 7 中温度梯度系指 GRC 板与主体结构或支承结构间的温度梯度, σ_{ts} 系指表示一定温度梯度条件下 GRC 构件内产生的温度应力范围。当板的几何尺寸小,且连接节点位移阻力小时,一般取较小值;当板的几何尺寸大,且连接节点位移阻力大时,一般取较大值。

表 5.3.8 中,当设计使用年限为短期时,GRC 构件的干湿应力较大,其干湿应力宜取该表第二列中的相应数值范围;而在长期使用条件下,GRC 板经长期干湿交替作用后,其干湿应力已大幅度降低,因而,其干湿应力宜取该表第三列相应数值范围。对于干湿应力的取值,当板的几何尺寸小,连接节点位移阻力小时,取较小值;当板的几何尺寸大,连接节点位移阻力大时,取较大值。

5.4 作用效应组合

5.4.1~5.4.5 在对 GRC 构件进行承载力极限状态设计计算时,作用在 GRC 构件上的自重荷载、风荷载、地震作用以及温湿度作用的组合值计算,按现行国家标准《建筑结构荷载规范》GB 50009 的规定进行计算。

GRC 构件广泛用于个性化的建筑,其安装倾角(即 GRC 构件外表面与水平面间的夹角)可能是任意角度。为了满足不同安装倾角 GRC 构件的作用效应计算,本标准公式(5.4.1-1)和公式(5.4.1-2)中的重力荷载和地震作用可分别采用垂直于 GRC 构件板面方向的相应分量来代替。则公式(5.4.1-1)和公式(5.4.1-2)可合并为如下公式:

 $S = \gamma_{\rm G} S_{\rm Gk} \cos\theta + \psi_{\rm W} \gamma_{\rm W} S_{\rm Wk} + \psi_{\rm E} \gamma_{\rm E} S_{\rm Ek} \sin\theta + \psi_{\rm TM} \gamma_{\rm TM} S_{\rm TMk}$ (6) 式中: θ ——GRC 构件安装倾角。

对于竖直安装的 GRC 构件, $\theta = 90^{\circ}$, 公式 (6) 可简化为:

$$S = \psi_{\mathbf{w}} \gamma_{\mathbf{w}} S_{\mathbf{w}\mathbf{k}} + \psi_{\mathbf{F}} \gamma_{\mathbf{F}} S_{\mathbf{E}\mathbf{k}} + \psi_{\mathbf{T}\mathbf{M}} \gamma_{\mathbf{T}\mathbf{M}} S_{\mathbf{T}\mathbf{M}\mathbf{k}}$$
 (7)

对于水平倒挂的 GRC 构件, $\theta = 0^{\circ}$, 公式 (6) 可简化为:

$$S = \gamma_{\rm G} S_{\rm Gk} + \psi_{\rm W} \gamma_{\rm W} S_{\rm Wk} + \psi_{\rm TM} \gamma_{\rm TM} S_{\rm TMk} \tag{8}$$

对于水平安装的 GRC 构件, $\theta = 180^{\circ}$, 公式 (6) 可简化为:

$$S = -\gamma_{c}S_{Gk} + \psi_{w}\gamma_{w}S_{Wk} + \psi_{TM}\gamma_{TM}S_{TMk}$$
 (9)

公式(9)仅仅是作用效应组合值计算的一般内力表达式,式中第一项中的负号仅表示重力荷载的方向与风荷载作用方向相反,此种情形下,自重荷载对结构是有利的。为安全起见,现行国家标准《建筑结构荷载规范》GB 50009 规定,其自重荷载分项系数取 1.0,不考虑负号的影响。

作用于 GRC 构件上的风荷载、地震作用、温湿度作用,同时到达最大值的可能性极小。因此,在进行作用效应组合时,第一项可变作用效应按 100%考虑(组合值系数取 1.0),第二项和第三项可变作用效应应适当折减。为此,本标准根据我国现行行业标准《金属与石材幕墙工程技术规范》 JGJ 133 的规定,对本

标准公式(5.4.1-1)和公式(5.4.1-2)中的第一、第二、第三可变荷载组合值系数分别规定为1.0、0.6和0.2。

GRC 构件的自重是经常作用的永久荷载,所有的基本组合情况中都包括此项。但在计算永久荷载作用效应时,其参与组合的可变荷载仅限于竖向荷载;GRC 构件的自重一般小于 $1.0 \, \mathrm{kN/m^2}$,明显低于风荷载,因此通常情况下是风荷载作用效应起控制作用。在此种情况下,《建筑结构荷载规范》GB 50009 规定:永久荷载分项系数 γ_{G} ,当对结构有利时取 1.0(该情形适用于水平安装的情况);当对结构不利时取 1.2(该情形适用于水平倒挂的情况)。极少出现永久荷载效应起控制作用的情形。当然,当此情形出现时,永久荷载分项系数 γ_{G} 取 1.35。

对于水平安装的 GRC 构件,通常情况下,GRC 构件自重荷载与风荷载的效应组合值应大于 GRC 构件自重荷载与雪荷载效应的组合值,因此,本节没有考虑雪荷载(或施工荷载)参与组合的情况。但在极个别地区和特定条件下出现上述相反的情形时,则应考虑雪荷载效应参加基本组合。

5.4.6 GRC 构件按正常使用极限状态进行抗裂验算。在正常使用情况下,GRC 构件主要承受重力荷载、风荷载和温湿度作用。根据现行国家标准《建筑结构荷载规范》GB 50009 的规定,上述荷载与作用效应组合值应按标准组合计算。

对于 GRC 竖直外墙,由于风荷载与重力荷载相互垂直,因此,在验算 GRC 构件的抗裂性时,仅需按风荷载和温湿度作用考虑对其抗裂性的影响。

对于倾斜安装的 GRC 外墙,当风荷载方向向上时,因 GRC 构件重力荷载沿垂直于板面方向分量的方向向下对结构是有利的;另一方面,我国现行建筑幕墙规范规定风荷载设计值不低于1.0kN/m²,而 GRC 构件的自重一般均小于1.0kN/m²,因此,在此种情形下,为计算偏于安全起见,在计算 GRC 构件的抗裂性时,不考虑重力荷载对结构的有利影响,其荷载设计值采用风荷载与温湿度作用的标准组合。反之,当风荷载方向向下时,则

风荷载与 GRC 构件重力荷载沿垂直于板面方向分量的方向相同,此种情形下,在计算 GRC 构件的抗裂性时,其荷载设计值应采用自重荷载、风荷载以及温湿度作用的标准组合。

5.4.7 考虑到 GRC 构件的温湿度作用效应对其挠度无明显影响,故对于 GRC 构件及其支承结构的挠度计算,仅需考虑自重荷载和风荷载的影响即可。自重荷载与风荷载的作用效应按标准组合,其组合值计算与抗裂荷载组合值计算相同(但不考虑温湿度作用效应参与组合)。

5.5 连接设计

5.5.1 GRC 外墙的连接及与主体结构的锚固可靠,其承载力通过计算或实物试验予以确认,并要留有余地,防止偶然因素产生突然破坏。连接件与主体结构的锚固承载力大于连接件本身的承载力,任何情况不允许发生锚固破坏。但对于 GRC 构件与预埋件的锚固而言,由于 GRC 构件的截面尺寸小,其锚固承载力远小于主体结构的锚固承载力,因此,不要求其锚固承载力也大于预埋件或连接件自身的承载力。

安装 GRC 构件的主体结构要具备承受 GRC 外墙传递的各种作用的能力,主体结构设计时充分加以考虑。

主体结构为混凝土结构时,其混凝土强度等级直接关系到锚固件工作的可靠性,除加强混凝土施工的工程质量管理外,对混凝土的最低强度等级要有相应的要求。为了保证与主体结构的连接可靠性,连接部位主体结构混凝土强度等级通常不低于 C20。

5.5.2 GRC 外墙横梁与立柱的连接,立柱与锚固件或主体结构钢梁、钢材的连接,通常通过螺栓、焊缝或铆钉实现,现行国家标准《钢结构设计标准》GB 50017 对上述连接均作了规定。同时受拉、受剪的螺栓进行螺栓的抗拉、抗剪设计;螺纹连接的公差配合及构造符合有关标准的规定。

为防止偶然因素的影响而使连接破坏,每个连接部位的受力 螺栓、铆钉等,至少需要布置2个。

- 5.5.3 GRC 材料的抗压强度高,而抗拉强度较低,特别是GRC 材料老化后,其极限抗拉强度仅为抗压强度的 1/10 左右,因此,将 GRC 构件支承于其下部连接节点上可充分利用 GRC 构件抗压强度高的特点,对确保 GRC 的安全度是有利的。从这一点来讲,GRC 构件与钢筋混凝土预制构件的安装要求是一致的。当然,如果 GRC 构件受安装条件的限制,其自重需支承于GRC 构件的上部连接节点上时,为确保 GRC 构件的安全度,对GRC 构件进行受拉承载力验算和抗裂验算是必要的。
- 5.5.4 GRC 外墙立柱截面较小,处于受压工作状态时受力不利,因此通常将其设计成轴心受拉或偏心受拉构件。立柱通常采用圆孔铰接接点在上端悬挂,采用长圆孔或椭圆孔与下端连接,形成吊挂受力状态。
- **5.5.5** GRC 外墙构件与混凝土结构的连接,通常通过预埋件实现,预埋件的锚固钢筋是锚固作用的主要来源,混凝土对锚固钢筋的粘结力是决定性的。因此预埋件在混凝土浇筑前埋入,施工时混凝土振捣密实。
- **5.5.6** 附录 C 对混凝土主体结构预埋件设计作了一般规定。对于预埋件的要求,主要依据有关研究成果和现行国家标准《混凝土结构设计规范》 GB 50010。
- 1 承受剪力的预埋件,其受剪承载力与混凝土强度等级、 锚固面积、直径等有关。在保证锚固长度和锚筋到埋件边缘距离 的前提下,根据试验提出了半理论、半经验的公式,并考虑锚筋 排数、锚筋直径对受剪承载力的影响;
- 2 承受法向拉力的预埋件,钢板弯曲变形时,锚筋不仅单独承受拉力,还承受钢板弯曲变形引起的内剪力,使锚筋处于复合应力状态,在计算公式中引入锚板弯曲变形的折减系数;
- 3 承受弯矩的预埋件,试验表明其受压区合力点往往超过 受压区边排筋以外,为方便和安全考虑,受弯力臂取外排锚筋中 心线之间的距离,并在计算公式中引入锚筋排数对力臂的折减 系数;

- **4** 承受拉力和剪力或拉力和弯矩的预埋件,根据试验结果, 其承载力均取线性相关关系;
- 5 承受剪力和弯矩的预埋件,根据试验结果,当 $V/V_{u0} > 0.7$ 时,取剪弯承载力线性相关;当 $V/V_{u0} \le 0.7$ 时,取受剪承载力与受弯承载力不相关。这里, V_{u0} 为预埋件单独承受受剪力作用时的受剪承载力;
- 6 当轴力 $N < 0.5 f_c A$ 时,近似取 M 0.4 NZ = 0 作为受压剪承载力与受压弯剪承载力计算的界限条件。本标准公式 (C. 0.1-3) 中系数 0.3 是与压力有关的系数,与试验结果比较,其取值是偏于安全的。

承受法向拉力和弯矩的预埋件,其锚筋截面面积计算公式中 拉力项的抗力均乘以系数 0.8,是考虑到预埋件的重要性、受力 复杂性而采取提高其安全储备的折减系数。

直锚筋和弯折锚筋同时作用时,取总剪力中扣除直锚筋所能 承担的剪力,作为弯折锚筋所承受的剪力,据此计算其截面 面积:

$$A_{\rm sb} \geqslant 1.4 \, \frac{V}{f_{\rm w}} - 1.25 \alpha_{\gamma} A_{\rm s}$$
 (10)

根据国外有关规范和国内对钢与混凝土组合结构中弯折锚筋的试验研究表明,弯折锚筋的弯折角度对受剪承载力影响不大。同时,考虑构造等原因,控制弯折角度在 15° ~ 45° 之间。当不设置直锚筋或直锚筋仅按构造设置时,在计算中不予以考虑,取 A_s =0。

这里规定的预埋件基本构造要求,是把满足常用的预埋件作 为目标,计算公式也是根据这些基本构造要求建立的。

在进行锚筋面积 A_s 计算时,假定锚筋充分发挥了作用,应力达到其强度设计值 f_y 。要使锚筋应力达到 f_y 而不滑移、拔出,就要有足够的锚固长度,锚固长度 l_a 与钢筋形式、混凝土强度、钢材品种有关,按本标准公式(C. 0. 5)计算。有时由于 l_a 的数值过大,在预埋件中采用有困难,此时可采用低应力设计

方法,即增加锚筋面积、降低锚筋实际应力,从而减小锚固长度,但通常不小于 15 倍钢筋直径。

5.5.9 砌体结构平面外承载能力低,难以直接进行连接,所以考虑增设混凝土结构或钢结构连接构件。轻质隔墙承载力和变形能力低,避免作为外墙的支承结构。

5.6 承载力极限状态设计

5.6.1 根据现行国家标准《建筑结构设计可靠度设计统一标准》 GB 50068 及本标准第 5.1.6 条的要求, GRC 构件承载力极限状态设计计算的应力表达式用下式描述:

$$\gamma_0 \sigma \leqslant \frac{f_{\text{PMk}}}{\gamma_m}$$
 (11)

式中: σ ——GRC 构件应力设计值 (N/mm^2) ;

 f_{PMk} ——GRC 构件强度抗弯标准值 (N/mm²);

 γ_m ——GRC 材料分项系数;

γ。——结构重要性系数。

考虑到 GRC 材料的强度具有随时间变化而变化的特点,具体来说,GRC 材料的比例极限强度随时间变化略有增长,但抗弯强度随时间变化明显下降并逐渐接近比例极限强度(图 14)。

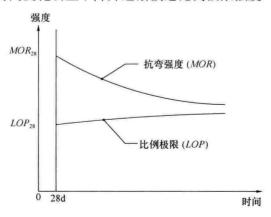


图 14 GRC 抗弯强度随时间的变化规律

根据图 14 的变化规律,引入 GRC 强度衰减系数 K 的概念,如本标准公式 (5.6.1-2),则老化后的 GRC 构件与标准龄期 GRC 构件的抗弯强度的关系如下式:

$$f_{\text{PAMk}} = K f_{\text{PMk}} \tag{12}$$

式中: f_{PAMk} ——老化后 GRC 构件抗弯强度标准值 (N/mm^2) 。

另一方面,老化后的 GRC 材料与混凝土一样具有随板厚增加而出现抗弯性能下降的特点。为此,通常采用标准厚度 (10mm) 的矩形 GRC 板 (即 GRC 标准试件) 所测得的抗弯性能 (抗弯强度或比例极限强度) 标准值作为 GRC 构件的抗弯性能基本值,再通过引入 GRC 标准试件与 GRC 构件抗弯性能差异系数 7,进行调整,则公式 (12) 变为:

$$f_{\text{PAMk}} = \frac{Kf_{\text{Mk}}}{\gamma_{\text{b}}} \tag{13}$$

将公式(11)中的 f_{PMk} 采用 f_{PAMk} 代替后,将公式(13)代入,不难得到老化后 GRC 构件承载力极限状态设计计算的应力表达式如本标准公式(5. 6. 1-1)所示。

由于 GRC 老化后的抗弯强度值大于其比例极限强度,因此,当缺乏老化试验数据时,出于偏于安全的考虑,本标准公式(5.6.1-1)可改写为公式(5.6.1-3)。

关于本标准公式(5.6.1-1)的几点讨论:

1 将本标准公式(5.6.1-1)与国际上 GRC 承载力极限状态设计计算公式进行对比,其应力表达式的内容与形式均基本一致。

如美国预制/预应力混凝土协会(PCI)编制的《GFRC 板推荐性规范》(以下简称美标)关于 GRC 构件承载力极限状态设计计算公式为:

$$\sigma \leqslant \phi S f_k$$
 (14)

式中: σ — 荷载与作用效应产生的截面应力设计值 (N/mm²);

S——GRC 构件截面形状系数,对于矩形实心截面取 1.0; 对于凸缘、工字形、箱形截面取 0.5;

f_k ——GRC 标准试件经老化后测得的具有 99%强度保留率 的抗弯强度特征值。

将式(14)进行适当变换,令 $\phi = \frac{1}{\gamma_m}$, $S = \frac{1}{\gamma_b}$,则得到与公式(5. 6. 1-1)类似的应力表达式,如下式:

$$\sigma \leqslant \frac{f_{k}}{\gamma_{m}\gamma_{k}} \tag{15}$$

式中: γ_m ——材料安全系数, 当 $\phi = 0.75$ 时, $\gamma_m = 1.333$;

 γ_{b} ——GRC 试件与 GRC 构件抗弯性能差异系数,对于矩形实心截面: 当 S=1 时, $\gamma_{b}=1$; 对于凸缘、工字形、箱形截面: 当 S=0.5 时, $\gamma_{b}=2$ 。

又如国际 GRCA 编制的《GRC 实用设计指南》(因该规范主要采用欧洲标准,故以下简称欧标)规定 GRC 构件的承载力设计计算公式也与公式(5.6.1-1)的形式一致,如下式:

$$\gamma_0 \sigma \leqslant \frac{f_{Mk}}{\gamma_m' \gamma_b \gamma_m} \tag{16}$$

式中: σ — 荷载与作用产生的截面应力设计值;

 f_{Mk} ——GRC 标准试件抗弯强度标准值;

 γ_{m} 一材料安全系数(含材料老化后强度衰减的影响),按表 3 确定;

 γ_b ——GRC 标准试件与 GRC 构件的抗弯性能差异系数,可根据板厚 h 按表 4 确定;

γ₀ ——结构重要性系数,通常取 1.0; 对于某些特殊工程, 取 1.0~1.5;

 γ_{tv} ——GRC 构件板厚变化系数,取 1.0~1.2。

表 3 材料安全系数

混合料	长期易	001 001 (F#II)	
	室外自然条件	室内	- 28d~90d (短期)
标准 GRC (砂灰比 1:1)	3~3.5	2.5~3	1.7~2.2

表 4 GRC 标准试件与 GRC 构件抗弯性能差异系数 γ,

构造	单层				夹芯结构			
板厚 h	6~10	12~16	20	40	60	100	200	300
$\gamma_{ m b}$	1.0	1.05	1.08	1. 15	1.2	1. 25	1. 37	1.5

2 GRC 标准试件与 GRC 构件抗弯性能差异系数 γ_b 的取值:

由于美标公式(14)中的形状系数 s 或公式(15)中抗弯性能差异系数 γ_b 的取值没有考虑 GRC 老化后对其矩形截面取值的影响,未能真实地反映不同截面厚度的 GRC 老化后的强度变化规律,因此,本标准不予采用。

欧标公式(16)考虑了 GRC 标准试件与 GRC 构件抗弯性能差异系数 γ 。受材料老化的影响,真实反映了 γ 。随板厚变化而变化的规律。故本标准规定 GRC 标准试件与 GRC 构件抗弯性能差异系数 γ 、采用欧标的数据(见表 4)。

- **3** GRC 材料分项系数 γ_m 取值,主要按如下几方面考虑确定:
 - 1) 根据美标公式 (15) 的规定, γ_m 取 1.33, 但考虑到该 公式中的 GRC 标准试件的抗弯强度标准值的强度保 留率为 99%, 当其将强度保留率折算至我国规范规定 的 95%强度保留率时, γ_m 的值应有所增加;
 - 2) 欧标公式(16)规定在室外自然条件下,GRC 材料分项系数 γ'_{m} ,当考虑 GRC 标准试件老化后强度衰减的影响后,其值为 $3\sim3.5$ 。另一方面,欧标还规定,18 级

GRC 构件的比例极限强度标准值不应小于 $7N/mm^2$,据此,可以推算出 GRC 构件的强度衰减系数 K 的最小值应为:

$$K = \frac{MOR_A}{MOR_E} \approx \frac{LOP_{28}}{MOR_{28}} = \frac{7}{18} = 0.3889$$
 (17)

另外,欧标公式(16)还考虑了 GRC 构件厚度系数 γ_{tv} (其平均值为 1.1) 的影响。综合上述因素,GRC 材料分项系数 γ_{m} 取值应为:

$$\gamma_{\rm m} = \gamma'_{\rm m} \cdot K \cdot \gamma_{\rm tv}$$
= $(3 \sim 3.5) \times 0.3889 \times 1.1$
= $1.28 \sim 1.49$

3) 现行国家标准《混凝土结构设计规范》规定混凝土材料的分项系数 γ_ω 取 1.4。

根据上述几方面分析考虑,确定本标准 GRC 材料分项系数 $\gamma_{\rm m}$ 取 1.4。

- 5.6.2 根据本标准的规定,GRC 标准试件与 GRC 矩形截面构件抗弯性能差异系数 γ_b 的取值按国际 GRC 协会编制的《GRC 实用设计指南》确定,如本标准表 5.6.2-1。对于 GRC 标准试件与倒 L 形,箱形带翼缘等异形截面 GRC 构件抗弯性能差异系数 γ_b ,考虑到 GRC 标准试件与 GRC 矩形截面构件抗弯性能差异系数 γ_b 随板厚 h 的变化规律实质上是随板截面中性轴到受拉区边缘距离 e 的变化而变化,且 h=2e,据此,其取值为本标准表 5.6.2-1 板厚 h 一栏中的数值除以 2 后得到,如本标准表 5.6.2-2。
- **5.6.3** 由于 GRC 受温湿度作用产生的应力属于轴力,因此,GRC 构件的强度设计值采用抗拉强度 f_{AUk} 作为 GRC 材料强度的代表值。考虑到 GRC 材料老化后,其抗拉强度下降并接近抗拉初裂强度 f_{Bk} ,当缺乏老化试验数据时,出于偏于安全的考虑,采用 f_{Bk} 代替 f_{AUk} 。

5.7 抗裂验算

5.7.1 GRC 构件的抗裂验算是正常使用极限状态设计的基本内容,重要性远大于挠度验算。其主要原因是 GRC 构件的抗拉初裂强度较低,而另一方面,GRC 构件大多限制在弹性范围工作,其变形较小,一般不会超过本标准规定的挠度限值。

根据现行国家标准《建筑结构荷载规范》GB 50009 的规定,对于正常使用极限状态设计,GRC 构件受重力荷载,风荷载和温湿度作用按标准组合计算其应力设计值。

GRC 材料抗裂分项系数 γ_g , 系根据国际 GRCA 协会编制的 《GRC 实用设计指南》的规定取 1.8。

5.7.2 由于温湿度作用控制的标准组合以轴力为主,GRC 构件的强度代表值采用抗拉初裂强度 f_{Bk} 。

5.8 锚固承载力设计

5.8.1~5.8.5 GRC 构件承受的各种荷载通过自身与预埋件间的锚固连接传递到主体结构上,可见,GRC 构件与预埋件间的锚固承载力对 GRC 结构的安全性来说是非常重要的。因此,GRC 构件的锚固承载力设计是 GRC 结构设计的重要组成部分。

通常,GRC 构件在锚固处的主要内力形式为:锚固受拉、锚固受剪和锚固拉剪复合受力等几种形式。锚固承载力的设计计算也主要是围绕这几种内力形式进行。

GRC 构件的锚固破坏形式也是多种多样的,且锚固破坏形式的改变,可显著改变 GRC 构件的锚固承载力。在通常情况下,一般通过一定的制作工艺、技术手段和构造设计来避免出现锚固承载力较低或不易计算、不易控制的锚固破坏形式出现。而对于可控的或锚固承载力较大的破坏形式,则是设计希望出现的锚固破坏形式。为了说明这个问题,以下仅以 L 形柔性锚杆的锚固受拉和预埋螺母受拉、受剪出现的破坏形式加以说明。

1 L形柔性锚杆的破坏形式(图 15)

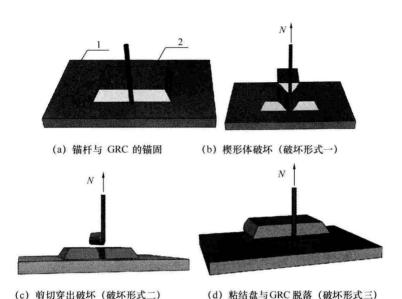


图 15 L形柔性锚杆锚固破坏形式示意 1-GRC板; 2-粘结盘

L形柔性锚杆的锚固受拉破坏形式主要表现为楔形体破坏 (图 15b),剪切穿出破坏 (图 15c) 和粘结盘脱落破坏 (图 15d) 等三种形式。在这三种破坏形式中,剪切穿出破坏与粘结盘脱落破坏的锚固受拉承载力很低,因此,锚固设计时要避免出现上述两种破坏形式发生。对于剪切穿出破坏,通过控制粘结盘的厚度等构造措施来消除剪切穿出破坏形式的发生;对于粘结盘脱落破坏,没有相应的构造措施,只能对制造工艺提出必要的工艺要求来解决。对于楔形体破坏,锚固承载力较高,是希望的破坏形式。

2 预埋螺母(或后锚锚栓)的锚固破坏形式

预埋螺母(或后锚锚栓)受拉时主要出现锥体受拉破坏(图 16a)和劈裂破坏(图 16b)两种形式。其中,锥体受拉破坏承载力高,是希望的破坏形式;而劈裂破坏一般发生在后锚固锚栓预紧力较大或预埋螺母(或后锚锚栓)离构件边缘距离过小所致,其受拉承载力较低,在设计时应通过构造设计或结构计算避

免发生这种破坏。

预埋螺母(或后锚锚栓)锚固受剪时会发生边缘楔形体受剪破坏(图 16c)和剪撬破坏(图 16d)。其中,边缘楔形体受剪破坏,承载力大,是正常的受剪破坏形式;而剪撬破坏一般发生在粗短锚栓埋设深度较浅的情形,其承载力较低,锚固受剪设计应避免这种破坏形式发生。通常,剪撬破坏形式可通过结构计算避免发生。

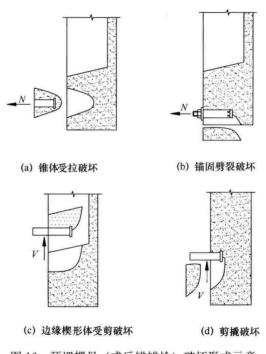


图 16 预埋螺母(或后锚锚栓)破坏形式示意

GRC 构件锚固承载力设计计算公式及锚固承载力分项系数,系根据 GRC 构件可能发生的锚固破坏形式及构件的类型、所使用的条件等按现行标准《混凝土结构后锚固技术规程》 JGJ 145 的规定确定。

5.8.7 GRC 背附钢架板的面板与柔性锚杆、及 GRC 平板与预

埋件(或后锚锚件)的锚固承载力推荐通过实验方法确定,其锚固承载力标准值根据样品试验实测得到的承载力数据,按美国PCI编制的《GFRC 板推荐性规范》规定的数理统计方法计算确定,但其概率分布的分位值为 0.05。 $t_{\alpha}(n-1)$ 为根据置信度 $1-\alpha$ 和样本容量 n 按学生氏函数确定的统计值。

5.8.8 GRC 带肋板的锚固承载力采用实验实测方法确定比较困难,通常采用现行行业标准《混凝土结构后锚固技术规程》JGJ 145 规定的相关公式计算确定。

6 GRC 平板结构设计

6.1 GRC 平板

- **6.1.1** GRC 构件在弹性范围工作,其挠度值一般小于板厚,因此本标准公式 (6.1.1) 完全满足四点支承 GRC 矩形平板的应力计算。
- **6.1.2** GRC 平板的板幅尺寸一般较小,通过采用柔性连接的构造设计后,产生的温湿度应力较小,其值参照本标准表 5.3.7 和表 5.3.8 取较小值。
- 6.1.3、6.1.4 为了保证 GRC 平板的结构安全及其正常使用,须对其进行承载力验算、抗裂验算和挠度验算。由于 GRC 平板的安装倾角可能会大于或小于 90°。因此,在进行荷载组合时,重力荷载标准值采用其沿垂直于板面方向的分量代替。

为了便于设计操作,GRC 平板的承载力验算和抗裂验算一般按下面内容进行:

- 1 承载力验算:
 - 1) 对各种荷载和作用计算的截面应力标准值按本标准第 5.4.1条~第5.4.5条的规定进行组合,并计算其应 力设计值;
 - 2) 对于风荷载控制的基本组合,其应力设计值按本标准 第 5. 6. 1 条验算;
 - 3) 对于温湿度效应控制的基本组合,其应力设计值按本标准第5.6.3条验算。
- 2 抗裂验算:
 - 1) 对各种荷载和作用计算的截面应力标准值按本标准第 5.4.6条的规定进行组合,并计算其应力设计值;
 - 2) 对于风荷载控制的标准组合, 其应力设计值按本标准

第 5.7.1 条验算;

- 3) 对于温湿度效应控制的标准组合,其应力设计值按本标准第5.7.2条验算。
- 6.1.5 GRC 平板的幅面尺寸较小,重量较轻,一般只需对锚固受拉承载力进行验算即可。GRC 平板的锚固形式主要有: 预埋螺母、后锚锚栓及后置挂件等几种。对于上述几种锚固形式的锚固受拉承载力标准值通常采用实验方法确定; 当缺乏锚固承载力实验数据时,参照本标准第 5.8.8 条的规定进行计算。

6.2 横 梁

6.2.1 受弯薄壁金属梁的截面存在局部稳定问题,为防止产生压应力区的局部屈服,通常可用下列方法之一加以控制:1) 规定最小壁厚 t_{min} 和规定最大宽厚比;2) 对抗压强度设计值或允许应力予以降低。

本标准中,GRC 外墙横梁与立柱设计,采用前一种控制方法。

1 最小壁厚

我国现行国家标准《冷弯薄壁型钢结构技术规范》GB 50018 规定薄壁型钢受力构件壁厚不宜小于 2mm。现行国家标准《铝合金建筑型材》GB/T 5237 规定用于幕墙的铝型材最小 壁厚为 3mm。

通常横梁跨度较小,相应的应力也较小,因此本条规定小跨度(跨度不大于 1.2m)的铝型材横梁截面最小厚度为 2.0mm,其余情况下截面受力部分厚度不小于 2.5mm。

为了保证直接受力螺纹连接的可靠性,防止自攻螺钉拉脱, 受力连接时,在采用螺纹直接连接的局部,铝型材厚度不小于螺 钉的公称直径。

钢材防腐蚀能力较低,横梁型钢的壁厚一般不小于 2.5mm, 并且本标准明确必要时预留腐蚀厚度。

2 最大宽厚比

型材杆件相邻两纵边之间的平板部分称为板件。一纵边与其他板件相连接,另一纵边为自由的板件,称为截面的自由挑出部位;两纵边均与其他板件相连接的板件,称为截面的双侧加劲部位。板件的宽厚比通常不超过一定限值,以保证截面受压时保持局部稳定性。截面中不符合宽厚比限值的部分,在计算截面特性时不予考虑。

弹性薄板在均匀受压下的稳定临界应力由下式计算:

$$\sigma_{\rm cr} = \beta \frac{\pi^2 E t^2}{12(1 - \nu^2)b_0^2} \tag{19}$$

式中: E---弹性模量;

t ——截面厚度;

ν——泊松比;

b₀ ——截面宽度;

β — 弹性屈服系数,自由挑出部位(边界条件视为三边简支、一边自由)取 0.425,双侧加劲部位(边界条件视为四边简支)取 4.0。

由上式可得到型材截面的宽厚比要求,即:

$$\frac{b_0}{t} \leqslant \pi \sqrt{\frac{\beta E}{12(1-\nu^2)f}} \tag{20}$$

式中: f ——型材强度设计值。

本条表 6.2.1 即由公式 (20) 计算得出。

- 6.2.4 横梁为双向受弯构件,竖向弯矩由面板自重和横梁自重产生;水平方向弯矩由风荷载和地震作用产生。由于横梁跨度小、刚度较大,一般情况不再进行整体稳定验算。
- 6.2.5 本条公式为材料力学中梁的抗剪计算公式。
- **6.2.7** GRC 构件的安装倾角可能是任何角度,因此,本条所述的风荷载标准值和重力荷载标准值均是指沿垂直于板面方向或沿平行于板面方向的相应分量。

6.3 立 柱

6.3.1 立柱截面主要受力部分厚度的最小值,主要是参照现行

国家标准《铝合金建筑型材》 GB/T 5237 中关于幕墙用型材最小厚度为 3mm 的规定。对于闭口箱形截面,由于有较好的抵抗局部失稳的性能,可以采用较小的壁厚,因此允许采用最小壁厚为 2.5mm 的型材。

钢型材的耐腐蚀性较弱,最小壁厚取为 3.0mm。

偏心受压的立柱很少,因其受力较为不利,立柱一般不设计成受压构件。当遇到立柱受压情况时,需要考虑局部稳定的要求,对截面的宽厚比加以控制,与本标准第 6.2.1 条的相应要求一致。

6.3.3 GRC 外墙在平面内应有一定的活动能力,以适应主体结构的侧移。立柱每层设活动接头后,就可以使立柱有上下活动的可能,从而使 GRC 外墙在自身平面内能有变形能力。此外,活动接头的间隙,还要满足立柱的温度变形、立柱安装施工的误差及主体结构承受竖向荷载后的轴向压缩变形等要求:

综合以上考虑,上柱与下柱接头空隙一般不小于 15mm。

6.3.4~6.3.6 立柱自下而上是全长贯通的,每层之间通过滑动接头连接。这一接头可以承受水平剪力,但只有当芯柱的惯性矩与外柱相同或较大且插入足够深度时,才能认为是连续的,否则按铰接考虑。

因此大多数实际工程,按铰接多跨梁来进行立柱的计算。现在已有专门的计算软件,通过考虑自下而上各层的层高、支承状况和水平荷载的不同数值,计算各截面的弯矩、剪力和挠度,作为选用铝型材的设计依据,比较准确。

对于某些 GRC 外墙承包商来说,目前设计还采用手算方式,按有关结构设计手册查出弯矩和挠度系数。

每层两个支承点时,通常按铰接多跨梁计算,求得较准确的 内力和挠度。但按铰接多跨梁计算需要相应的计算机软件,所 以,手算时通常近似按双跨梁考虑。

6.3.7 一般情况下,立柱不设计成偏心受压构件,按偏心受拉构件进行截面设计。因此,在连接设计时,通常将柱的上端挂在

主体结构上。

6.3.8 考虑到在某些情况下可能有偏心受压立柱,因此本条列出偏心受压柱的稳定验算公式。本公式引自现行国家标准《钢结构设计标准》GB 50017。

弯矩作用平面内的轴心受压稳定系数 φ ,钢型材按现行国家标准《钢结构设计标准》GB 50017 确定,铝型材按现行国家标准《铝合金结构设计规范》GB 50429 确定。

6.3.9 本条规定依据现行国家标准《钢结构设计标准》 GB 50017。

7 GRC 带肋板结构设计

7.1 面 板

7.1.1~7.1.3 GRC 带肋板由面板和加强肋组成。结构计算时, 为方便起见,一般将面板与加强肋拆分后分别进行计算。

对于 GRC 面板的设计计算,首先根据面板与加强肋间的约束关系确定计算简图。一般情况下,GRC 面板在边肋处可发生转动,因而面板在边肋处受到的约束可视为简支;而 GRC 面板在中肋处不能发生转动,故面板在中肋处受到的约束视为固定。

对于单向板设计,本标准公式(7.1.2-1)和(7.1.2-2)系根据上述约束情况,按弹性方法确定。但在实际设计计算中,有可能出现其他的计算简图,在此情形下,面板的应力计算需根据实际的计算简图按弹性方法确定。

对于双向板设计,本标准公式(7.1.3)系按弹性方法分析确定,其中,弯矩系数根据约束状态查附录D确定。

7.2 加强助

7.2.2 在计算加强肋的截面应力时,考虑到面板与加强肋是共同受力的,因此,加强肋的计算截面为带翼缘的截面(见本标准图 7.2.2),其有效翼缘宽度 b_i 按美国 PCI 编制的《GFRC 推荐性规范》确定为 24h (h 为板厚)。

7.3 极限状态设计

7.3.1 为保证 GRC 带肋板的结构安全,分别对 GRC 面板和加强肋进行承载力验算,即作用于 GRC 面板或加强肋上自重荷载、风荷载、地震作用及温湿度作用等按基本组合分别计算的截面应力设计值不大于 GRC 面板或 GRC 加强肋的抗弯强度设计

值或抗拉强度设计值。

GRC 带肋板是一种非对称的结构且板截面尺寸大,具有较大的温湿度作用效应;而过大的温湿度作用效应也必然降低GRC 构件的承载能力。因此,对 GRC 带肋板的设计,需适当控制 GRC 带肋板的板幅尺寸,使之不产生过大的温湿度效应。根据实际经验,GRC 带肋板板面尺寸小于 4.5m 时,在正常柔性连接条件下,其温湿度作用效应值不会超过本标准表 5.3.7 和表 5.3.8 中的数值。

GRC 带肋板的温湿度效应较大,其板面容易产生裂缝现象。 因而,其抗裂性验算非常重要。抗裂验算时,分别对 GRC 面板 和加强肋所受到的各种荷载按标准组合计算其截面应力,并使其 截面应力设计值不大于 GRC 面板和加强肋的比例极限强度设计 值或抗拉初裂强度设计值。

为了便于设计操作,GRC 面板和加强肋的承载力验算和抗裂验算一般按下面内容进行:

1 承载力验算:

- 1) 对各种荷载和作用产生的截面应力标准值按本标准第 5.4.1条~第5.4.5条的规定进行组合,并分别计算 面板和加强肋的应力设计值;
- 2) 对于风荷载控制的基本组合,面板和加强肋的应力设计值按本标准第5.6.1条验算;
- 3) 对于温湿度效应控制的基本组合,面板和加强肋的应力设计值按本标准第5.6.3条验算。

2 抗裂验算:

- 1) 对各种荷载和作用产生的截面应力标准值按本标准第 5.4.6条的规定进行组合,并分别计算面板和加强肋 的应力设计值;
- 2) 对于风荷载控制的标准组合,面板和加强肋的应力设计值按本标准第5.7.1条验算;
- 3) 对于温湿度效应控制的标准组合,面板和加强肋的应

力设计值按本标准第5.7.2条验算。

7.3.2 GRC 带肋板截面尺寸大,而工作应力较 GRC 平板和 GRC 背附钢架板更低,因此其挠度值很小。面板与加强肋分别 按本标准第 5.4.7 条的规定验算挠度。

8 GRC 背附钢架板结构设计

8.1 GRC 面 板

8.1.1~8.1.2 GRC 面板采用纵横相互平行排列的柔性锚杆的 支承约束可简化为点支承形式。这种点支承 GRC 板的结构计算,目前国际上广泛采用美国 PCI 编制的《GFRC 推荐性规范》所推荐的直接设计法。其计算原理如下:

点支承 GRC 面板内任一板区格的计算简图如本标准图 8.1.1 所示,板区格内的总弯矩 M。按简支条件下长跨计算,如下式:

$$M_0 = \frac{q_{\rm k} l_{\rm x} l_{\rm n}^2}{8} \tag{21}$$

板区格沿长跨方向假想为支承板带和跨中板带,支承板带和 跨中板带各占板区格短跨长度的 1/2 (图 17)。板区格的内力分 布如图 18,其内力分配如下:

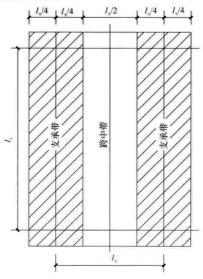


图 17 支承带与跨中带在板区格内的分布示意

负弯矩 $M_s = 0.65 M_0$; 正弯矩 $M_f = 0.35 M_0$;

支承带负弯矩 $M_{As} = 0.75 M_s = 0.4875 M_0$; 支承带正弯矩 $M_{Af} = 0.6 M_f = 0.21 M_0$;

跨中带负弯矩 $M_{\mathrm{Bs}}=0.25M_{\mathrm{s}}=0.1625M_{\mathrm{0}}$; 跨中带正弯矩 $M_{\mathrm{Bf}}=0.4M_{\mathrm{f}}=0.14M_{\mathrm{0}}$

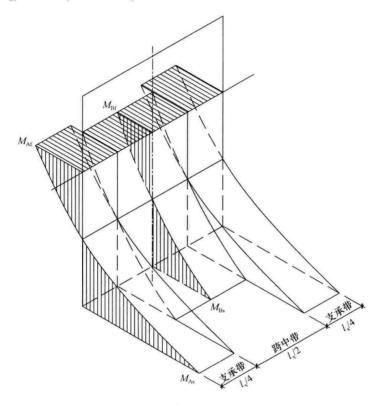


图 18 板区格内的内力分布示意

在垂直于板面方向的重力荷载或风荷载或地震作用下板区格 截面产生的最大应力标准值按下式计算:

$$\sigma_{k} = \frac{M_{As}}{W} = \frac{0.4875M_{0}}{\frac{1}{6} \left(\frac{1}{2}l_{x}\right)h^{2}} = 0.7312 \frac{q_{k}l_{n}^{2}}{h^{2}}$$
(22)

- 式中: σ_k ——面板在重力荷载或风荷载或地震作用下产生的截面 应力标准值 (N/mm^2) ,即 σ_k 分别代表 σ_{Gk} 或 σ_{wk} 或 σ_{Fk} ;
 - q_k 重力荷载或风荷载或地震作用标准值 (N/mm^2) , 即 q_k 分别代表 q_{Gk} 或 w_k 或 q_{Ek} ;
 - l_n ──板区格长边净跨 (mm);
 - h 板区格面板厚度 (mm)。
- 8.1.3 对于板幅尺寸不大于 6m 的 GRC 背附钢架板,当柔性锚杆的构造尺寸符合本标准推荐的构造尺寸条件下,其 GRC 面板的温湿度应力一般小于 0.3N/mm²,可忽略不计。但对于板幅尺寸大于 6m 的 GRC 背附钢架板,其 GRC 面板所产生的温湿度应力根据其面板所受柔性锚杆约束的实际工况或按本标准第 5.3.7条和第 5.3.8条的规定确定。
- **8.1.4** GRC 面板通过柔性锚杆支承在背附钢架上,其挠度由背附钢架控制。因此,GRC 面板仅需要进行承载力和抗裂验算。

对于板幅尺寸不大于 6m 且柔性锚杆构造尺寸基本合理的 GRC 背附钢架板,因温湿度效应可忽略不计,其荷载与作用仅需考虑重力荷载、风荷载和地震作用。

对于板幅尺寸大于 6m 的 GRC 背附钢架板除应考虑自重荷载、风荷载和地震作用外,还需按本标准第 8.1.3 条的规定合理估算 GRC 面板的温湿度作用效应。在一般情况下,上述荷载的基本组合或标准组合,均由风荷载控制。但当板幅尺寸过大时,可能会出现由温湿度作用控制的基本组合或标准组合。由于这种工况会明显降低 GRC 面板承受外荷载的能力,因此,尽量避免出现这种由温湿度作用控制的荷载组合工况。

为了便于设计操作,GRC 面板的承载力验算和抗裂验算一般按下面内容进行:

- 1 承载力验算:
 - 1) 对各种荷载和作用产生的截面应力标准值按本标准第 5.4.1条~第5.4.5条的规定进行组合,并分别计算

GRC 面板的应力设计值;

- 2) 对于风荷载控制的基本组合, GRC 面板的应力设计值 按本标准第 5. 6. 1 条验算;
- 3) 对于温湿度效应控制的基本组合, GRC 面板的应力设计值按本标准第 5.6.3 条验算。

2 抗裂验算:

- 1) 对各种荷载和作用产生的截面应力标准值按本标准第 5.4.6条的规定进行组合,并计算 GRC 面板的应力设 计值;
- 2) 对于风荷载控制的标准组合, GRC 面板的应力设计值 按本标准第 5. 7. 1 条验算;
- 3) 对于温湿度效应控制的标准组合, GRC 面板的应力设计值按本标准第 5.7.2 条验算。
- **8.1.5** GRC 面板与 L 形锚杆的锚固连接进行承载力验算时,面板与柔性锚杆的锚固进行锚固受拉承载力验算,面板与重力锚杆的锚固进行锚固受剪承载力验算。

8.2 背附钢架设计

- 8.2.1 背附钢架一般由竖横两个方向的龙骨相互交叉焊接而成,除了承受弯矩和剪力外,横龙骨一般不承受轴力,竖龙骨视支承情况不同,还可能承受轴拉力或轴压力。龙骨截面主要受力部位的厚度要求与本标准第 6.2.1 条的要求一致。
- 8.2.5 一般情况下, GRC 面板通过柔性锚杆和重力锚杆与竖向龙骨连接, 竖向龙骨主要承受垂直于 GRC 面板平面的风荷载, 地震荷载以及平行于 GRC 面板平面内自重荷载和温湿度作用。 其承载力计算要求与本标准第 6.3.7 条一致; 对于采用下节点支承的背附钢架, 应考虑按本标准第 6.3.8 条的规定, 对竖向龙骨进行稳定性计算。
- **8.2.6** 竖向龙骨承受的上述荷载再传递到与之相连的横向龙骨上,在这种情况下应对横向龙骨进行抗弯承载力和抗剪承载力计

算。对于上下横向龙骨间除两端外没有竖向龙骨连接且 GRC 面板直接偏置于横向龙骨上的情形出现时,可能对横向龙骨产生过大的扭矩。此种情形下,应对横龙骨进行抗扭承载力计算。

8.2.8 作用在背附钢架上的荷载与作用按本标准第 5.4.7 条的规定进行计算;背附钢架的挠度限值按美国 PCI 编制的《GFRC推荐性规范》的规定取 *l*/240。

9 制作加工

9.1 一般规定

9.1.2 生产方案包括生产工艺、制模工艺、生产计划、技术质量控制计划、成品保护、堆放及运输方案等内容。

9.2 GRC 构件制作

- 9.2.3 模具可以是木模、玻璃钢模、钢模、硅胶模、水泥模、石膏模或复合模等,刚度和尺寸精度要求是为了确保 GRC 构件产品不出现变形和尺寸偏差。
- 9.2.5 在 GRC 浆料未固化前进行及时装配是为了背附钢架与 GRC 构件连接更为牢靠,装配时采用恰当的辅助承托和定位装置是为了避免背附钢架的重量通过连接锚固点直接施加到未凝结的 GRC 材料上,造成产品变形、局部裂纹及表面花斑等质量问题。
- **9.2.7** GRC 材料脱模强度一般为产品设计强度值的 50%,局部应力过于集中会导致 GRC 局部出现破损或开裂。

9.4 检验

- **9.4.1** 严重缺陷是指影响产品结构性能或安装使用功能的缺陷。
- **9.4.2** 表面装饰效果层具有特殊肌理,如剔凿、重度喷砂或水洗、岩石起伏面效果等,外观尺寸根据装饰面起伏适当放宽。
- 9.4.5 色差无法用量化的标准进行控制,一般而言 GRC 产品的属性决定了色差很难避免,色差可以通过规范材料与工艺得到有效控制,轻微色差能反映出 GRC 材料的自然艺术表现力,但过大色差难以被建筑师或业主接受,这种带有主观性的评判标准

有时容易产生分歧,应本着协商的原则进行妥善处理。在工程实践中,色差过大不能被建筑师或业主接受时,通常在各方协商一致的前提下,通过必要的表面处理来改善色差。

10 安装施工

10.1 一般规定

- 10.1.4 低温天气构件、预埋件和连接件上有可能出现结露和霜雾,而且对于需要嵌缝的工程,温度越低,固化时间越长,胶的收缩性越大,容易出现胶与构件边缘出现裂纹。低温对嵌缝前构件接缝处的清理工作也会造成不便,综合上述考虑,施工温度不应低于 0° 0.
- **10.1.5** 为避免出现天沟部位、与门窗的交接部位渗水,GRC 施工需要与屋面防水施工方、门窗安装方积极协调。

10.3 施工准备

- 10.3.1 检查的主要内容有: (1) 外观检查; (2) 构件尺寸误差、角度误差、平整度误差和端部垂直度等对构件安装质量有影响的尺寸; (3) 龙骨和预埋件构造及其防锈蚀处理是否符合设计和规范要求; (4) 安装辅件和材料包括连接件、螺栓、垫片、膨胀螺栓或化学锚栓、止水垫片、密封胶条、密封胶、表面防护剂等的质量; (5) 主体结构上的锚固件的构造、安全性及防腐处理是否符合设计和规范要求。
- 10.3.2 重点对如下内容进行检查和测量: (1) 对结构和墙体的尺寸、墙面平整度和标高等进行测量及尺寸复核; (2) 检查结构与墙体是否存在蜂窝、孔洞、裂缝、夹层、凹凸、抹灰空鼓等问题; (3) 检查门窗部位、保温层和防水构造等与构件安装有关部位的状况; (4) 检查水电通信进户管线、落水管、空调预留孔洞、沉降缝、伸缩缝等情况。

10.4 安装施工

10.4.2 后锚固打孔不能距离边缘太近,以免造成混凝土劈裂或

锚固力不足。在钢筋混凝土上打孔遇到钢筋时,需离开 5cm 以上距离重新打孔,如有必要允许调节连接板的尺寸。其他具体要求参照现行行业标准《混凝土结构后锚固技术规程》JGJ 145。

支承结构与钢结构主体采用焊接连接方式时,将焊缝去渣、清理干净,熔熘和毛刺做打磨处理,表面达到平滑/圆滑,再进行表面防锈处理,涂刷环氧富锌漆两道,厚度一般不小于 $60\mu m$ 。

如 GRC 构件内的预埋连接件与主体钢结构直接连接,考虑 到连接处防锈处理与应力释放,推荐采用螺栓连接。

10.4.18 清洗应自上而下进行。清洗液体通常选择用清水、中性清洁剂。

10.5 安装质量要求

- **10.5.1** 安装施工放线与主体结构的测量配合,及时调整误差,确保 GRC 外墙构件安装所需要的精度,以及连接所要求的极限调整空间。
- **10.5.2** 构件或构件之间出现色差,通常以 6m 距离观察是否影响整体效果作为评判依据。
- 10.5.3 GRC 构件立面垂直度的偏差,指整个 GRC 构件立面高度范围内任取 3m 高度立面偏差不大于 5mm,任取 15m 高度立面偏差不大于 10mm,对于高层建筑任取 30m 高度立面偏差不大于 20mm。

11 验 收

11.2 进场验收

- **11.2.1** 当难以出具针对本项目的 GRC 构件型式检验报告的情况下,制造商应提供不针对任何项目的产品型式检验报告。
- **11.2.3** 供应商提交的型式检验报告以及企业内部实验室进行的性能测试不能代替性能复试。

11.4 竣工验收

11.4.2 涉及本条第3款和第5款检测要求时,检测样板由生产 商按照与生产产品同样的工艺进行单独制备,施工单位组织 实施。

12 维修与保养

12.1 一般规定

- **12.1.1** GRC 使用维护说明书系结合具体 GRC 工程及产品设计、使用特点编制的具有针对性的指导性文件。
- **12.1.2** GRC 外墙工程的保修期一般自 GRC 分项工程质量验收之日起计算。

12.3 清洗和保养

- **12.3.2** 防护剂的防污、防水性能会逐年衰减,如实际防护效果不能满足使用需要,会影响到 GRC 材料的抗冻融性能和使用寿命。
- **12.3.3** 酸性清洗材料会对外墙表面及地面造成侵蚀,同时清洗废水对周边土壤环境、绿化都会造成危害。
- **12.3.4** 二次破坏主要指对使用中的 GRC 外墙进行如钻孔、切割、调整产品与结构连接方式、破坏接缝和负载等不当行为。

统一书号: 15112·31450 定 价: **34.00** 元